重组
电荷(物理)
超精细结构
原子物理学
人口
磁场
自旋(空气动力学)
分子物理学
物理
化学物理
化学
基因
热力学
社会学
人口学
量子力学
生物化学
作者
Taeyeon Kim,Juno Kim,Xian‐Sheng Ke,James T. Brewster,Juwon Oh,Jonathan L. Sessler,Dongho Kim
标识
DOI:10.1002/anie.202017332
摘要
Abstract Charge‐recombination processes are critical for photovoltaic applications and should be suppressed for efficient charge transport. Here, we report that an applied magnetic field (0–1 T) can be used control the charge‐recombination dynamics in an expanded rosarin‐C 60 complex. In the low magnetic field regime (<100 mT), the charge‐recombination rate slows down due to hyperfine coupling, as inferred from transient absorption spectroscopic analyses. In contrast, in the high field regime, i.e., over 500 mT, the charge‐recombination rate recovers and increases because the Δg mechanism facilitates spin conversion to a triplet charge‐separated state (S to T 0 ) that undergoes rapid charge‐recombination to a localized rosarin triplet state. Therefore, we highlight the charge‐recombination rate and the localized triplet state population can be modulated by the magnetic field in charge donor/acceptor non‐covalent complexes.
科研通智能强力驱动
Strongly Powered by AbleSci AI