Prediction Models in Aneurysmal Subarachnoid Hemorrhage: Forecasting Clinical Outcome With Artificial Intelligence

医学 蛛网膜下腔出血 改良兰金量表 结果(博弈论) 前瞻性队列研究 内科学 机器学习 缺血 缺血性中风 数学 计算机科学 数理经济学
作者
Guido de Jong,René Aquarius,Barof Sanaan,Ronald Bartels,J. André Grotenhuis,Dylan Henssen,Hieronymus D. Boogaarts
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:88 (5): E427-E434 被引量:51
标识
DOI:10.1093/neuros/nyaa581
摘要

Abstract BACKGROUND Predicting outcome after aneurysmal subarachnoid hemorrhage (aSAH) is known to be challenging and complex. Machine learning approaches, of which feedforward artificial neural networks (ffANNs) are the most widely used, could contribute to the patient-specific outcome prediction. OBJECTIVE To investigate the prediction capacity of an ffANN for the patient-specific clinical outcome and the occurrence of delayed cerebral ischemia (DCI) and compare those results with the predictions of 2 internationally used scoring systems. METHODS A prospective database was used to predict (1) death during hospitalization (ie, mortality) (n = 451), (2) unfavorable modified Rankin Scale (mRS) at 6 mo (n = 413), and (3) the occurrence of DCI (n = 362). Additionally, the predictive capacities of the ffANN were compared to those of Subarachnoid Haemorrhage International Trialists (SAHIT) and VASOGRADE to predict clinical outcome and occurrence of DCI. RESULTS The area under the curve (AUC) of the ffANN showed to be 88%, 85%, and 72% for predicting mortality, an unfavorable mRS, and the occurrence of DCI, respectively. Sensitivity/specificity rates of the ffANN for mortality, unfavorable mRS, and the occurrence of DCI were 82%/80%, 94%/80%, and 74%/68%. The ffANN and SAHIT calculator showed similar AUCs for predicting personalized outcome. The presented ffANN and VASOGRADE were found to perform equally with regard to personalized prediction of occurrence of DCI. CONCLUSION The presented ffANN showed equal performance when compared with VASOGRADE and SAHIT scoring systems while using less individual cases. The web interface launched simultaneously with the publication of this manuscript allows for usage of the ffANN-based prediction tool for individual data (https://nutshell-tool.com/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自渡完成签到 ,获得积分10
2秒前
cwy发布了新的文献求助10
2秒前
高高雪瑶完成签到,获得积分10
3秒前
白勺发布了新的文献求助10
5秒前
姚序东发布了新的文献求助10
6秒前
点墨完成签到,获得积分10
8秒前
田様应助研友_Z1xbgn采纳,获得10
10秒前
Maestro_S应助快乐滑板采纳,获得10
10秒前
端庄大白发布了新的文献求助20
10秒前
zxc完成签到,获得积分10
10秒前
风中叶子发布了新的文献求助50
11秒前
晓布衣完成签到 ,获得积分10
15秒前
小文殊发布了新的文献求助10
17秒前
20秒前
无花果应助Jia采纳,获得10
21秒前
杨中森发布了新的文献求助10
21秒前
朴实成风完成签到 ,获得积分10
22秒前
英姑应助润润采纳,获得10
23秒前
孙燕应助快乐滑板采纳,获得10
24秒前
hyl发布了新的文献求助10
25秒前
bkagyin应助小文殊采纳,获得10
25秒前
yi发布了新的文献求助30
26秒前
27秒前
28秒前
29秒前
无花果应助KerryDoe采纳,获得10
29秒前
32秒前
mo发布了新的文献求助20
33秒前
热心的曼梅完成签到,获得积分20
33秒前
34秒前
大糖糕僧完成签到,获得积分10
35秒前
cdercder应助快乐滑板采纳,获得10
36秒前
36秒前
36秒前
小张在努力完成签到,获得积分10
36秒前
37秒前
cmh完成签到 ,获得积分10
39秒前
39秒前
赵小红发布了新的文献求助10
40秒前
陈昭琼发布了新的文献求助10
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846128
求助须知:如何正确求助?哪些是违规求助? 3388519
关于积分的说明 10553286
捐赠科研通 3109083
什么是DOI,文献DOI怎么找? 1713334
邀请新用户注册赠送积分活动 824702
科研通“疑难数据库(出版商)”最低求助积分说明 774982