已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Fault Diagnosis of Infrared Insulator Images Based on Image Instance Segmentation and Temperature Analysis

计算机科学 人工智能 卷积神经网络 分割 绝缘体(电) 图像分割 红外线的 模式识别(心理学) 深度学习 像素 计算机视觉 工程类 物理 光学 电气工程
作者
Bin Wang,Ming Dong,Ming Ren,Zhanyu Wu,Chenxi Guo,Tianxin Zhuang,Oliver Pischler,Jiacheng Xie
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (8): 5345-5355 被引量:132
标识
DOI:10.1109/tim.2020.2965635
摘要

As an onsite condition monitoring method, an infrared inspection can help to discover and analyze abnormal temperature increases in power equipment. For improving the efficiency of the onsite diagnosis of insulators in substations, this article proposes an automatic diagnosis method using instance segmentation and temperature analysis of infrared insulator images. For developing this method, thousands of infrared images from field inspection databases were collected to establish an annotated data set of insulator images. With the aid of the Mask R-convolutional neural network (CNN), it was possible to extract multiple insulators automatically in the infrared images. Transfer learning, as well as the dynamic learning rate algorithm, were then employed to realize the training process of Mask R-CNN with the annotated image data set. The result of the testing experiment showed that the mean Average Precision (mAP) of the model is 0.77, and the frame per second (FPS) is 5.07, which indicated great identification accuracy and computing speed of the proposed model. Next, function fitting was realized to extract the temperature distribution of each insulator. Finally, to evaluate the condition of each insulator, rules, which are based on the related standards, were established using machine language. This is the first time that the machine could independently realize fault analysis of multiple insulators in the infrared images, which is a great attempt to adapt the development of the Internet of Things and the tendency of predictive maintenance. Moreover, because of the universality of the model algorithm used, automatic infrared fault diagnosis for other power equipment could also be performed in a similar manner, which has significant potential applicability in the area of power equipment diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho关闭了zho文献求助
1秒前
迷恋发布了新的文献求助10
1秒前
糖糖发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
zho关闭了zho文献求助
4秒前
7秒前
淡定从霜发布了新的文献求助10
8秒前
zho关闭了zho文献求助
9秒前
10秒前
10秒前
12秒前
zho关闭了zho文献求助
14秒前
彭于晏应助淡定从霜采纳,获得10
16秒前
mfxj发布了新的文献求助10
17秒前
高高完成签到 ,获得积分10
18秒前
zho关闭了zho文献求助
19秒前
19秒前
科研通AI5应助健忘的含卉采纳,获得10
21秒前
21秒前
22秒前
Akim应助sky11采纳,获得10
23秒前
zho关闭了zho文献求助
24秒前
24秒前
柯擎汉完成签到,获得积分10
25秒前
仙林AK47发布了新的文献求助10
26秒前
阔达的沛文完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
33秒前
九九030211发布了新的文献求助10
33秒前
Orange应助毅诚菌采纳,获得10
37秒前
Hello发布了新的文献求助10
38秒前
吃饭用大碗完成签到 ,获得积分10
39秒前
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798236
求助须知:如何正确求助?哪些是违规求助? 3343666
关于积分的说明 10317296
捐赠科研通 3060451
什么是DOI,文献DOI怎么找? 1679529
邀请新用户注册赠送积分活动 806665
科研通“疑难数据库(出版商)”最低求助积分说明 763282