亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection

色谱法 主成分分析 化学 线性判别分析 高效薄层色谱法 偏最小二乘回归 薄层色谱法 化学计量学 模式识别(心理学) 人工智能 数学 计算机科学 统计
作者
Arian Amirvaresi,Masoumeh Rashidi,Marzyeh Kamyar,Maryam Amirahmadi,Bahram Daraei,Hadi Parastar
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1628: 461461-461461 被引量:37
标识
DOI:10.1016/j.chroma.2020.461461
摘要

In this work, high-performance thin-layer chromatography (HPTLC) coupled with multivariate image analysis (MIA) is proposed as a fast and reliable tool for authentication and adulteration detection of Iranian saffron samples based on their HPTLC fingerprints. At first, the secondary metabolites of saffron were extracted using ultrasonic-assisted solvent extraction (UASE) which was optimized using central composite design (CCD). Next, the RGB coordinates of HPTLC images were used for estimation of saffron origin based on principal component analysis (PCA). The PCA scores plot showed that saffron samples were clustered into two clear-cut groups which was 92% matched with the geographical origins of the samples. In the next step, common plant-derived adulterants of saffron including safflower, saffron style, calendula, and rubia were investigated with MIA analysis of HPTLC images using partial least squares-discriminant analysis (PLS-DA) at 5–35% (w/w) levels. The PLS-DA results showed proper classification of saffron and adulterants with sensitivity 99.14%, specificity 96.94%, error rate 1.96% and accuracy 98.04. Also, the effect of HPTLC injection volume on the performance of the proposed strategy was evaluated. The ability of the proposed method was then investigated by analyzing two additional sample sets including mixed samples of four plant-derived adulterants and adulterated commercial samples. Sensitivity and specificity of this model were 100% which confirmed its validity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二中所长发布了新的文献求助10
1秒前
优美寒松完成签到 ,获得积分10
4秒前
RIPCCCP完成签到,获得积分10
5秒前
李健应助二中所长采纳,获得10
9秒前
hanqing完成签到,获得积分10
9秒前
等待寄云完成签到 ,获得积分10
10秒前
伶俐的金连完成签到 ,获得积分10
10秒前
橡皮鱼完成签到,获得积分10
13秒前
火山书痴完成签到 ,获得积分10
13秒前
周晏平应助威武小猫咪采纳,获得10
18秒前
咄咄完成签到 ,获得积分10
21秒前
李保龙完成签到 ,获得积分10
22秒前
Leviathan完成签到 ,获得积分10
22秒前
希望天下0贩的0应助Aipoi1采纳,获得10
23秒前
喜悦宫苴完成签到,获得积分10
25秒前
movinglee完成签到,获得积分10
29秒前
合一海盗完成签到,获得积分10
30秒前
COSMAO应助科研通管家采纳,获得10
31秒前
Jasper应助科研通管家采纳,获得10
31秒前
COSMAO应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
31秒前
COSMAO应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得20
31秒前
余婧关注了科研通微信公众号
33秒前
zhan20200503发布了新的文献求助10
36秒前
chd完成签到,获得积分20
37秒前
39秒前
41秒前
Freedom_1996完成签到,获得积分10
42秒前
呜呜吴发布了新的文献求助10
43秒前
Aipoi1发布了新的文献求助10
46秒前
47秒前
47秒前
48秒前
COSMAO应助明亮不乐采纳,获得10
48秒前
杨无敌完成签到 ,获得积分10
48秒前
csz483完成签到 ,获得积分10
49秒前
呜呜吴完成签到,获得积分10
50秒前
余婧发布了新的文献求助20
51秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130101
求助须知:如何正确求助?哪些是违规求助? 3666985
关于积分的说明 11600581
捐赠科研通 3365411
什么是DOI,文献DOI怎么找? 1849065
邀请新用户注册赠送积分活动 912871
科研通“疑难数据库(出版商)”最低求助积分说明 828302