Classification of Alzheimer’s Disease with Respect to Physiological Aging with Innovative EEG Biomarkers in a Machine Learning Implementation

脑电图 脑老化 疾病 神经科学 心理学 人工智能 机器学习 计算机科学 医学 认知 病理
作者
Fabrizio Vecchio,Francesca Miraglia,Francesca Alù,Matteo Menna,Elda Judica,Maria Cotelli,Paolo Maria Rossini
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:75 (4): 1253-1261 被引量:55
标识
DOI:10.3233/jad-200171
摘要

Several studies investigated clinical and instrumental differences to make diagnosis of dementia in general and in Alzheimer's disease (AD) in particular with the aim to classify, at the individual level, AD patients and healthy controls cooperating with neuropsychological tests for an early diagnosis. Advanced network analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity and could be used in classification processes. If successfully reached, this goal would add a low-cost, easily accessible, and non-invasive technique with neuropsychological tests.To investigate the possibility to automatically classify physiological versus pathological aging from cortical sources' connectivity based on a support vector machine (SVM) applied to EEG small-world parameter.A total of 295 subjects were recruited: 120 healthy volunteers and 175 AD. Graph theory functions were applied to undirected and weighted networks obtained by lagged linear coherence evaluated by eLORETA. A machine-learning classifier (SVM) was applied. EEG frequency bands were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz).The receiver operating characteristic curve showed AUC of 0.97±0.03 (indicating very high classification accuracy). The classifier showed 95% ±5% sensitivity, 96% ±3% specificity, and 95% ±3% accuracy for the classification.EEG connectivity analysis via a combination of source/connectivity biomarkers, highly correlating with neuropsychological AD diagnosis, could represent a promising tool in identification of AD patients. This approach represents a low-cost and non-invasive method, one that utilizes widely available techniques which, when combined, reach high sensitivity/specificity and optimal classification accuracy on an individual basis (0.97 of AUC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子完成签到,获得积分10
2秒前
领导范儿应助lkgxwpf采纳,获得10
5秒前
蜗牛完成签到 ,获得积分20
8秒前
14秒前
15秒前
000完成签到,获得积分10
17秒前
Suica发布了新的文献求助10
17秒前
20秒前
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
陆王牛马发布了新的文献求助20
25秒前
悦耳孤萍发布了新的文献求助10
26秒前
李健应助天空没有极限采纳,获得10
26秒前
28秒前
28秒前
Yunny关注了科研通微信公众号
31秒前
wk完成签到,获得积分10
32秒前
科研狗完成签到,获得积分10
32秒前
兔BF完成签到,获得积分10
33秒前
34秒前
尊敬的半梅完成签到 ,获得积分10
34秒前
36秒前
Owen应助Roseaiwade采纳,获得10
36秒前
欣喜的书芹完成签到 ,获得积分10
37秒前
领导范儿应助悦耳孤萍采纳,获得10
38秒前
隐形的巴豆完成签到,获得积分10
39秒前
40秒前
45秒前
46秒前
chen完成签到 ,获得积分10
47秒前
47秒前
Arbor发布了新的文献求助10
49秒前
氢气发布了新的文献求助10
49秒前
Roseaiwade发布了新的文献求助10
51秒前
大模型应助锂sdsa采纳,获得10
53秒前
懒癌晚期完成签到,获得积分10
53秒前
CR7完成签到,获得积分10
54秒前
葶苈子完成签到 ,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808