已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of Alzheimer’s Disease with Respect to Physiological Aging with Innovative EEG Biomarkers in a Machine Learning Implementation

脑电图 脑老化 疾病 神经科学 心理学 人工智能 机器学习 计算机科学 医学 认知 病理
作者
Fabrizio Vecchio,Francesca Miraglia,Francesca Alù,Matteo Menna,Elda Judica,Maria Cotelli,Paolo Maria Rossini
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:75 (4): 1253-1261 被引量:55
标识
DOI:10.3233/jad-200171
摘要

Several studies investigated clinical and instrumental differences to make diagnosis of dementia in general and in Alzheimer's disease (AD) in particular with the aim to classify, at the individual level, AD patients and healthy controls cooperating with neuropsychological tests for an early diagnosis. Advanced network analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity and could be used in classification processes. If successfully reached, this goal would add a low-cost, easily accessible, and non-invasive technique with neuropsychological tests.To investigate the possibility to automatically classify physiological versus pathological aging from cortical sources' connectivity based on a support vector machine (SVM) applied to EEG small-world parameter.A total of 295 subjects were recruited: 120 healthy volunteers and 175 AD. Graph theory functions were applied to undirected and weighted networks obtained by lagged linear coherence evaluated by eLORETA. A machine-learning classifier (SVM) was applied. EEG frequency bands were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz).The receiver operating characteristic curve showed AUC of 0.97±0.03 (indicating very high classification accuracy). The classifier showed 95% ±5% sensitivity, 96% ±3% specificity, and 95% ±3% accuracy for the classification.EEG connectivity analysis via a combination of source/connectivity biomarkers, highly correlating with neuropsychological AD diagnosis, could represent a promising tool in identification of AD patients. This approach represents a low-cost and non-invasive method, one that utilizes widely available techniques which, when combined, reach high sensitivity/specificity and optimal classification accuracy on an individual basis (0.97 of AUC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_85YJY8发布了新的文献求助10
刚刚
自由的雁完成签到 ,获得积分10
7秒前
自high锅完成签到,获得积分10
8秒前
诚心的黑猫完成签到,获得积分10
10秒前
科研通AI2S应助Pannn采纳,获得10
10秒前
lbnzd8g完成签到,获得积分10
11秒前
11秒前
15秒前
15秒前
17秒前
20秒前
llc完成签到 ,获得积分10
23秒前
24秒前
Miao完成签到,获得积分10
25秒前
28秒前
高兴从阳发布了新的文献求助10
31秒前
云轩完成签到,获得积分10
32秒前
诸葛带你做分析_yorfir完成签到,获得积分0
33秒前
哦豁完成签到 ,获得积分10
34秒前
34秒前
34秒前
35秒前
史紫烟发布了新的文献求助30
39秒前
拾忆发布了新的文献求助10
39秒前
英俊的铭应助zy采纳,获得10
40秒前
xzy998应助故意的大地采纳,获得10
43秒前
研友_85YJY8完成签到,获得积分10
43秒前
Judy完成签到 ,获得积分10
44秒前
BetterH完成签到 ,获得积分10
46秒前
脑洞疼应助拾忆采纳,获得10
47秒前
49秒前
宁地啊完成签到,获得积分10
49秒前
50秒前
xm完成签到 ,获得积分10
55秒前
能HJY发布了新的文献求助10
56秒前
Dr.coco发布了新的文献求助10
57秒前
共享精神应助wxy采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091015
求助须知:如何正确求助?哪些是违规求助? 3629719
关于积分的说明 11507048
捐赠科研通 3341546
什么是DOI,文献DOI怎么找? 1836796
邀请新用户注册赠送积分活动 904716
科研通“疑难数据库(出版商)”最低求助积分说明 822512