Deep Convolutional Neural Networks for Thyroid Tumor Grading using Ultrasound B-mode Images

卷积神经网络 分级(工程) 接收机工作特性 超声波 人工智能 计算机科学 模式识别(心理学) 放射科 医学 机器学习 工程类 土木工程
作者
Juntao Shao,Jingjing Zheng,Bing Zhang
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:148 (3): 1529-1535 被引量:11
标识
DOI:10.1121/10.0001924
摘要

The performances of deep convolutional neural network (DCNN) modeling and transfer learning (TF) for thyroid tumor grading using ultrasound imaging were evaluated. This retrospective study included input patient data (ultrasound B-mode image sets) assigned to the training group (115 participants) or testing group (28 participants). DCNN (ResNet50) and TF (ResNet50, ResNet101, ResNet152, VGG16, Inception V3, and DenseNet201), which trains a convolutional neural network that has been pre-trained on ImageNet, were used for image classification based on thyroid tumor grade. Supervised training was performed by using the DCNN or TF model to minimize the difference between the output data and clinical grading. The performances of the DCNN and TF models were assessed in the testing dataset with receiver operating characteristic analyses. Results showed that TF based on Resnet50 and VGG16 had better performance than DCNN (ResNet50) in differentiating thyroid tumor with areas under the receiver operating characteristic (AUCs) curve more than 0.8. However, TF based on ResNet101, ResNet152, InceptionV3, and Densenet201 had equal or worse performances than DCNN (ResNet50) in grading thyroid tumor with AUCs less than 0.5. TF based on ResNet50 and VGG16 had a superior performance compared to DCNN (ResNet50) model for grading thyroid tumors based on ultrasound images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助西瓜刀采纳,获得10
刚刚
上官若男应助杨震采纳,获得10
4秒前
科研通AI5应助xufund采纳,获得10
4秒前
5秒前
慎ming发布了新的文献求助30
6秒前
7秒前
9秒前
11秒前
丘比特应助迅速的八宝粥采纳,获得10
12秒前
欢呼流沙发布了新的文献求助10
12秒前
西瓜刀发布了新的文献求助10
13秒前
在水一方应助李喜喜采纳,获得10
14秒前
顾矜应助孙振亚采纳,获得10
21秒前
LynnQiu完成签到,获得积分10
21秒前
完美凝海完成签到 ,获得积分10
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
残幻应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
残幻应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
24秒前
残幻应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
25秒前
xufund发布了新的文献求助10
30秒前
31秒前
31秒前
pcr163应助踏实雨采纳,获得60
31秒前
顾矜应助踏实雨采纳,获得30
31秒前
田様应助lmp采纳,获得10
32秒前
凝夜完成签到 ,获得积分10
33秒前
34秒前
34秒前
35秒前
36秒前
orixero应助俏皮的一德采纳,获得10
38秒前
38秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669