Machine learning surrogates for molecular dynamics simulations of soft materials

计算机科学 分子动力学 软物质 人工神经网络 推论 人工智能 生物系统 机器学习 化学 胶体 计算化学 物理化学 生物
作者
JCS Kadupitiya,Fanbo Sun,Geoffrey Fox,Vikram Jadhao
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:42: 101107-101107 被引量:47
标识
DOI:10.1016/j.jocs.2020.101107
摘要

Molecular dynamics (MD) simulations accelerated by high-performance computing (HPC) methods are powerful tools to investigate and extract the microscopic mechanisms characterizing the properties of soft materials such as self-assembled nanoparticles, virus capsids, confined electrolytes, and polymeric fluids. In this paper, we extend the idea developed in our earlier work of integrating machine learning (ML) methods with HPC-accelerated MD simulations of soft materials in order to enhance their predictive power and advance their applications for research and educational activities. Parallelized MD simulations of self-assembling ions in nanoconfinement are employed to demonstrate our approach. We find that an artificial neural network-based regression model successfully learns nearly all the interesting features associated with the output ionic density profiles over a broad range of ionic system parameters. The ML model generates predictions that are in excellent agreement with the results from MD simulations. The inference time associated with the ML model is over a factor of 10,000 smaller than the corresponding parallel MD simulation time. Through this demonstration, we introduce a “machine learning surrogate” for MD simulations of soft-matter systems. We develop and deploy a web application on nanoHUB to realize the advantages associated with the ML surrogate. The results demonstrate that the performance of MD simulations can be further enhanced by using ML, enabling rapid and accurate simulation-driven exploration of the soft material design space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白的面包完成签到 ,获得积分10
2秒前
陈阳发布了新的文献求助10
3秒前
CD56应助yaruyou采纳,获得20
4秒前
青栀完成签到,获得积分10
8秒前
长明灯完成签到,获得积分10
14秒前
14秒前
Gideon完成签到,获得积分10
16秒前
18秒前
廖采枫完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
agony完成签到 ,获得积分10
19秒前
20秒前
今后应助aleilei采纳,获得10
22秒前
乐乐应助孟冬采纳,获得10
23秒前
25秒前
浮游应助yusheng采纳,获得10
27秒前
28秒前
28秒前
xiaoqi完成签到,获得积分10
29秒前
不配.应助bwx采纳,获得200
30秒前
fxsg发布了新的文献求助30
31秒前
慕青应助Cloudyyy采纳,获得30
33秒前
33秒前
研友_ZG4ml8发布了新的文献求助20
34秒前
yyzhou应助电王采纳,获得10
35秒前
王婷发布了新的文献求助10
38秒前
41秒前
研友_ZG4ml8完成签到,获得积分10
43秒前
44秒前
Cloudyyy完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
46秒前
48秒前
Cloudyyy发布了新的文献求助30
49秒前
50秒前
52秒前
丘比特应助0001采纳,获得10
52秒前
NexusExplorer应助王婷采纳,获得10
54秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883539
求助须知:如何正确求助?哪些是违规求助? 4169015
关于积分的说明 12935690
捐赠科研通 3929303
什么是DOI,文献DOI怎么找? 2156058
邀请新用户注册赠送积分活动 1174468
关于科研通互助平台的介绍 1079184