已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Influence maximization in complex networks through optimal percolation

影响力营销 计算机科学 复杂网络 最大化 启发式 渗透(认知心理学) 网络科学 集合(抽象数据类型) 数学优化 数学 营销 神经科学 万维网 关系营销 程序设计语言 业务 生物 市场营销管理
作者
Flaviano Morone,Hernán A. Makse
出处
期刊:Nature [Nature Portfolio]
卷期号:524 (7563): 65-68 被引量:1054
标识
DOI:10.1038/nature14604
摘要

A rigorous method to determine the most influential superspreaders in complex networks is presented—involving the mapping of the problem onto optimal percolation along with a scalable algorithm for big-data social networks—showing, unexpectedly, that many weak nodes can be powerful influencers. In complex networks, some nodes are more important than others. The most important nodes are those whose elimination induces the network's collapse, and identifying them is crucial in many circumstances, for example, if searching for the most effective way to stop a disease from spreading. But this is a hard task, and most methods available for the purpose are essentially based on trial-and-error. Here, Flaviano Morone and Hernán Makse devise a rigorous method to determine the most influential nodes in random networks by mapping the problem onto optimal percolation and solving the optimization problem with an algorithm that the authors call 'collective influence'. They find that the number of optimal influencers is much smaller, and that low-degree nodes can play a much more important role in the network than previously thought. The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network1, or, if immunized, would prevent the diffusion of a large scale epidemic2,3. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science4,5. Despite the vast use of heuristic strategies to identify influential spreaders6,7,8,9,10,11,12,13,14, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix15 of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase16.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
矮小的珠发布了新的文献求助10
7秒前
sun发布了新的文献求助10
8秒前
8秒前
mtt发布了新的文献求助10
11秒前
12秒前
绝尘发布了新的文献求助10
13秒前
大憨憨完成签到 ,获得积分10
14秒前
义气如萱发布了新的文献求助10
16秒前
Eve完成签到,获得积分20
17秒前
张青岳完成签到,获得积分10
17秒前
mtt完成签到,获得积分10
18秒前
含糊的泥猴桃完成签到 ,获得积分10
20秒前
非哲完成签到 ,获得积分10
21秒前
just_cook完成签到,获得积分10
22秒前
CYY发布了新的文献求助10
25秒前
顾矜应助义气如萱采纳,获得10
29秒前
黄迪迪完成签到 ,获得积分10
30秒前
小林同学0219完成签到 ,获得积分10
36秒前
123完成签到 ,获得积分10
36秒前
欢呼妙菱完成签到,获得积分10
40秒前
劉平果完成签到 ,获得积分10
42秒前
黯然完成签到 ,获得积分10
45秒前
归尘应助Eve采纳,获得10
45秒前
Xiaoxiao应助Eve采纳,获得10
45秒前
Singularity应助Eve采纳,获得10
45秒前
47秒前
矮小的珠完成签到,获得积分10
51秒前
谷子完成签到 ,获得积分10
54秒前
59秒前
脑洞疼应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
爱看文献的小恐龙完成签到,获得积分10
1分钟前
炙热胡萝卜完成签到 ,获得积分10
1分钟前
ChencanFang完成签到,获得积分10
1分钟前
自由的青槐完成签到 ,获得积分10
1分钟前
善良的西瓜完成签到 ,获得积分10
1分钟前
WilliamJarvis完成签到 ,获得积分10
1分钟前
Ninico完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779029
求助须知:如何正确求助?哪些是违规求助? 3324712
关于积分的说明 10219503
捐赠科研通 3039737
什么是DOI,文献DOI怎么找? 1668400
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487