清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface

典型相关 脑-机接口 计算机科学 过滤器组 语音识别 模式识别(心理学) 脑电图 人工智能 接口(物质) 滤波器(信号处理) 计算机视觉 心理学 精神科 最大气泡压力法 气泡 并行计算
作者
Xiaogang Chen,Yijun Wang,Shangkai Gao,Tzyy‐Ping Jung,Xiaorong Gao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:12 (4): 046008-046008 被引量:575
标识
DOI:10.1088/1741-2560/12/4/046008
摘要

Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain–computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8–15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ∼33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min−1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助5476采纳,获得10
刚刚
6秒前
nine2652完成签到 ,获得积分10
6秒前
11秒前
yindi1991完成签到 ,获得积分10
17秒前
5476发布了新的文献求助10
19秒前
Alger完成签到,获得积分10
20秒前
善学以致用应助adeno采纳,获得10
29秒前
你今天学了多少完成签到 ,获得积分10
29秒前
31秒前
41秒前
数乱了梨花完成签到 ,获得积分10
41秒前
41秒前
zgt01完成签到 ,获得积分10
42秒前
真真完成签到 ,获得积分10
45秒前
潘fujun完成签到 ,获得积分10
55秒前
58秒前
1分钟前
adeno发布了新的文献求助10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
shezhinicheng完成签到 ,获得积分10
1分钟前
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
kxdxng完成签到 ,获得积分10
1分钟前
丁娜完成签到 ,获得积分10
1分钟前
1分钟前
孝顺的觅风完成签到 ,获得积分10
1分钟前
yujie完成签到 ,获得积分10
1分钟前
HCCha完成签到,获得积分10
1分钟前
t铁核桃1985完成签到 ,获得积分10
1分钟前
王波完成签到 ,获得积分10
1分钟前
1分钟前
feitian201861完成签到,获得积分10
2分钟前
WSY完成签到 ,获得积分10
2分钟前
2分钟前
Spring完成签到,获得积分10
2分钟前
小猴子完成签到 ,获得积分10
2分钟前
5476完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244297
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541