电磁感应透明
纳米光子学
等离子体子
功勋
折射率
电介质
物理
光电子学
谐振器
Q系数
硅
光学
材料科学
作者
Yuanmu Yang,Ivan I. Kravchenko,Dayrl P. Briggs,Jason Valentine
摘要
Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor (Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values <~10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light–matter interaction at the nanoscale. Electromagnetically induced transparency—an effect in atomic physics caused by interference between transitions—has found analogues in other areas, like nanophotonics. Yang et al. exploit this effect in an all-dielectric metasurface to produce high-Q-factor resonances ideal for refractive index sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI