非负矩阵分解
分歧(语言学)
矩阵分解
趋同(经济学)
因式分解
基质(化学分析)
功能(生物学)
计算机科学
算法
数学
物理
特征向量
复合材料
经济增长
量子力学
材料科学
语言学
经济
生物
哲学
进化生物学
作者
Dennis L. Sun,Cédric Févotte
标识
DOI:10.1109/icassp.2014.6854796
摘要
Non-negative matrix factorization (NMF) is a popular method for learning interpretable features from non-negative data, such as counts or magnitudes. Different cost functions are used with NMF in different applications. We develop an algorithm, based on the alternating direction method of multipliers, that tackles NMF problems whose cost function is a beta-divergence, a broad class of divergence functions. We derive simple, closed-form updates for the most commonly used beta-divergences. We demonstrate experimentally that this algorithm has faster convergence and yields superior results to state-of-the-art algorithms for this problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI