ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM

人工智能 计算机视觉 计算机科学 同时定位和映射 Orb(光学) 惯性测量装置 初始化 移动机器人 机器人 图像(数学) 程序设计语言
作者
Carlos Campos,Richard Elvira,Juan J. Gómez Rodríguez,J. M. M. Montiel,Juan D. Tardós
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:37 (6): 1874-1890 被引量:414
标识
DOI:10.1109/tro.2021.3075644
摘要

This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models. The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-a-Posteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real-time, in small and large, indoor and outdoor environments, and is 2 to 5 times more accurate than previous approaches. The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previous information. This allows to include in bundle adjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session. Our experiments show that, in all sensor configurations, ORB-SLAM3 is as robust as the best systems available in the literature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.6 cm on the EuRoC drone and 9 mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
英勇白晴完成签到,获得积分20
1秒前
一米八完成签到,获得积分20
4秒前
惜秒完成签到,获得积分10
4秒前
4秒前
6秒前
宋琪琪发布了新的文献求助30
6秒前
科研马完成签到,获得积分10
6秒前
一米八发布了新的文献求助10
6秒前
可靠的海豚完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
大个应助唠叨的山槐采纳,获得10
9秒前
大个应助香蕉雨安采纳,获得10
9秒前
JamesPei应助白昼采纳,获得10
10秒前
炸胡娃娃发布了新的文献求助10
11秒前
Leon完成签到,获得积分10
11秒前
11秒前
隐形曼青应助LDDD采纳,获得10
12秒前
王冬雪完成签到,获得积分10
12秒前
情怀应助CDI和LIB采纳,获得10
14秒前
领导范儿应助周广通采纳,获得10
14秒前
15秒前
15秒前
所所应助nn采纳,获得10
15秒前
hzl完成签到,获得积分20
16秒前
16秒前
轻松凝芙完成签到,获得积分20
17秒前
温柔踏歌完成签到,获得积分10
17秒前
刘星宇发布了新的文献求助10
17秒前
x跳发布了新的文献求助30
18秒前
18秒前
xu发布了新的文献求助10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
所所应助羊羊羊采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4436555
求助须知:如何正确求助?哪些是违规求助? 3910823
关于积分的说明 12145906
捐赠科研通 3557099
什么是DOI,文献DOI怎么找? 1952350
邀请新用户注册赠送积分活动 992444
科研通“疑难数据库(出版商)”最低求助积分说明 888001