A deep-learning prediction model for imbalanced time series data forecasting

计算机科学 系列(地层学) 时间序列 人工智能 依赖关系(UML) 任务(项目管理) 机器学习 平均绝对误差 数据挖掘 均方误差 统计 数学 生物 古生物学 经济 管理
作者
Chenyu Hou,Jiawei Wu,Bin Cao,Jing Fan
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:4 (4): 266-278 被引量:61
标识
DOI:10.26599/bdma.2021.9020011
摘要

Time series forecasting has attracted wide attention in recent decades. However, some time series are imbalanced and show different patterns between special and normal periods, leading to the prediction accuracy degradation of special periods. In this paper, we aim to develop a unified model to alleviate the imbalance and thus improving the prediction accuracy for special periods. This task is challenging because of two reasons: (1) the temporal dependency of series, and (2) the tradeoff between mining similar patterns and distinguishing different distributions between different periods. To tackle these issues, we propose a self-attention-based time-varying prediction model with a two-stage training strategy. First, we use an encoder-decoder module with the multi-head self-attention mechanism to extract common patterns of time series. Then, we propose a time-varying optimization module to optimize the results of special periods and eliminate the imbalance. Moreover, we propose reverse distance attention in place of traditional dot attention to highlight the importance of similar historical values to forecast results. Finally, extensive experiments show that our model performs better than other baselines in terms of mean absolute error and mean absolute percentage error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助王千鹤采纳,获得10
刚刚
诸葛藏藏发布了新的文献求助10
刚刚
1秒前
2秒前
lhr完成签到 ,获得积分10
2秒前
relink完成签到,获得积分10
2秒前
2秒前
6秒前
6秒前
6秒前
YingyingFan发布了新的文献求助10
6秒前
8秒前
小小狗完成签到,获得积分10
8秒前
谈笑间应助杨明凤采纳,获得10
8秒前
Jovid完成签到,获得积分10
9秒前
HEAUBOOK应助柔弱友菱采纳,获得10
9秒前
tt11111发布了新的文献求助10
10秒前
谈笑间应助香酥板栗采纳,获得10
10秒前
lmy发布了新的文献求助10
12秒前
既白完成签到 ,获得积分10
12秒前
13秒前
科研通AI5应助JF123_采纳,获得10
13秒前
13秒前
跳跃虔完成签到,获得积分20
13秒前
脑洞疼应助诸葛藏藏采纳,获得10
14秒前
cassie发布了新的文献求助10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
WWW应助科研通管家采纳,获得10
16秒前
Rage_Wang应助科研通管家采纳,获得20
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
所所应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462