Intelligent Cruise Guidance and Vehicle Resource Management with Deep Reinforcement Learning

计算机科学 强化学习 巡航 资源管理(计算)
作者
Guolin Sun,Kai Liu,Gordon Owusu Boateng,Guisong Liu,Wei Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/jiot.2021.3098779
摘要

The emergence of new business and technological models for urban-related transportation has revealed the need for transportation network companies (TNCs). Most research works on TNCs optimize the interests of drivers, passengers and the operator assuming vehicle resources remain unchanged, but ignore the optimization of resource utilization and satisfaction from the perspective of flexible and controllable vehicle resources. In fact, the load of the scene is variable in time, which necessitates flexible control of resources. Drivers wish to effectively utilize their vehicle resources to maximize profits. Passengers desire to spend minimum time waiting and the platform cares about the commission they can accrue from successful trips. In this paper, we propose an adaptive intelligent cruise guidance and vehicle resource management model to balance vehicle resource utilization and request success rate, while improving platform revenue. We propose an advanced deep reinforcement learning (DRL) method to autonomously learn the statuses and guide the vehicles to hotspot areas where they can pick orders. We assume the number of online vehicles in the scene is flexible and the learning agent can autonomously change the number of online vehicles in the system according to the real-time load to improve effective vehicle resource utilization. An adaptive reward mechanism is enforced to control the importance of vehicle resource utilization and request success rate at decision steps. Simulation results and analysis reveal that our proposed DRL-based scheme balances vehicle resource utilization and request success rate at acceptable levels while improving the platform revenue, compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Xu完成签到 ,获得积分10
4秒前
5秒前
6秒前
111完成签到 ,获得积分10
7秒前
刘搞笑发布了新的文献求助10
9秒前
10秒前
林溪完成签到,获得积分10
12秒前
LJM完成签到,获得积分10
14秒前
高圆圆完成签到,获得积分10
14秒前
HEIKU应助纪鹏飞采纳,获得10
20秒前
Xu关注了科研通微信公众号
22秒前
23秒前
东邪西毒加任我行完成签到,获得积分10
25秒前
bc应助rrrrroxie采纳,获得40
26秒前
Sunshine完成签到,获得积分10
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
CipherSage应助刘搞笑采纳,获得10
28秒前
29秒前
Aries完成签到 ,获得积分10
33秒前
犹豫紫丝发布了新的文献求助10
38秒前
38秒前
39秒前
39秒前
tier3完成签到,获得积分10
40秒前
40秒前
我以為忘了想念完成签到 ,获得积分10
41秒前
helly完成签到,获得积分10
42秒前
42秒前
43秒前
ariaooo完成签到,获得积分10
44秒前
44秒前
45秒前
liu发布了新的文献求助10
46秒前
科研通AI2S应助默默忆山采纳,获得10
49秒前
sure发布了新的文献求助10
49秒前
Orange应助liu采纳,获得10
50秒前
奋斗的荆发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415