亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy-Enhanced Federated Learning Against Poisoning Adversaries

计算机科学 计算机安全 信息隐私 互联网隐私
作者
Xiaoyuan Liu,Hongwei Li,Guowen Xu,Zongqi Chen,Xiaoming Huang,Rongxing Lu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 4574-4588 被引量:195
标识
DOI:10.1109/tifs.2021.3108434
摘要

Federated learning (FL), as a distributed machine learning setting, has received considerable attention in recent years. To alleviate privacy concerns, FL essentially promises that multiple parties jointly train the model by exchanging gradients rather than raw data. However, intrinsic privacy issue still exists in FL, e.g., user's training samples could be revealed by solely inferring gradients. Moreover, the emerging poisoning attack also poses a crucial security threat to FL. In particular, due to the distributed nature of FL, malicious users may submit crafted gradients during the training process to undermine the integrity and availability of the model. Furthermore, there exists a contradiction in simultaneously addressing two issues, that is, privacy-preserving FL solutions are dedicated to ensuring gradients indistinguishability, whereas the defenses against poisoning attacks tend to remove outliers based on their similarity. To solve such a dilemma, in this paper, we aim to build a bridge between the two issues. Specifically, we present a privacy-enhanced FL (PEFL) framework that adopts homomorphic encryption as the underlying technology and provides the server with a channel to punish poisoners via the effective gradient data extraction of the logarithmic function. To the best of our knowledge, the PEFL is the first effort to efficiently detect the poisoning behaviors in FL under ciphertext. Detailed theoretical analyses illustrate the security and convergence properties of the scheme. Moreover, the experiments conducted on real-world datasets show that the PEFL can effectively defend against label-flipping and backdoor attacks, two representative poisoning attacks in FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助老实白云采纳,获得10
15秒前
呆呆的猕猴桃完成签到 ,获得积分10
31秒前
33秒前
tian完成签到,获得积分10
36秒前
老实白云发布了新的文献求助10
39秒前
tian发布了新的文献求助30
44秒前
Yanz完成签到,获得积分10
53秒前
科研通AI5应助小嘉采纳,获得10
58秒前
鹿小新完成签到 ,获得积分0
1分钟前
深情安青应助老实白云采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
FashionBoy应助黄小渣采纳,获得10
1分钟前
jeff完成签到,获得积分10
1分钟前
2分钟前
小晚完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小嘉发布了新的文献求助10
2分钟前
2分钟前
2分钟前
老实白云发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Ruri完成签到,获得积分10
3分钟前
3分钟前
清風折柳发布了新的文献求助10
3分钟前
3分钟前
3分钟前
慕青应助清風折柳采纳,获得10
3分钟前
Sience发布了新的文献求助10
3分钟前
势临完成签到 ,获得积分10
4分钟前
Akim应助顺心蜜粉采纳,获得200
4分钟前
天天开心完成签到 ,获得积分10
4分钟前
马騳骉完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助150
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520749
关于积分的说明 11204708
捐赠科研通 3257497
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629