Modification of electronic and thermoelectric properties of InSe/GaSe superlattices by strain engineering

材料科学 超晶格 凝聚态物理 热电效应 带隙 半导体 从头算 应变工程 热电材料 电子能带结构 功勋 电子结构 从头算量子化学方法 热导率 光电子学 复合材料 物理 热力学 量子力学 分子
作者
Wilfredo Ibarra-Hernández,A. C. Garcia‐Castro,A. Bautista Hernández,M. Salazar Villanueva,A. Cantarero,A. Romero
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (2) 被引量:10
标识
DOI:10.1103/physrevmaterials.6.025403
摘要

In recent years, superlattices and layered materials have been highlighted as potential candidates for thermoelectric applications, this thanks to their low thermal conductivity. Moreover, external applied pressure and biaxial strain can be used to enhance their properties by achieving a band engineering and electronic tuning. With this in mind, we performed an $ab$ initio based study on InSe/GaSe superlattices under biaxial strain along the layer planes. Layers of InSe and GaSe with ${D}_{3h}$ symmetry were stacked along the $c$ axis to create the superlattice. The atomic stacking along the $c$ axis is Se-Ga-Ga-Se-Se-In-In-Se, which corresponds to the space group #187. Our ab initio calculations predict the superlattice to be a semiconductor with an electronic band gap of ${E}_{g}$ = 0.54 eV. With the aim to increase thermoelectric performance, we apply positive and negative biaxial strain on the ab plane. Under compressive strain, the electronic structure evolves to an insulating behavior by increasing the band gap. When tensile strain is applied, we observe a transition towards a metallic character with a systematic reduction of the band gap. Interestingly, the semiconductor-metal transition only occurs when spin-orbit coupling (SOC) is switched off. With the inclusion of SOC, the system experiences an electronic topological transition around 3% tensile strain, with a double band gap along the $K\text{\ensuremath{-}}\mathrm{\ensuremath{\Gamma}}\text{\ensuremath{-}}M$ high-symmetry paths. We have found that for both, $n$-type and $p$-type doping, compressive strain improves the electronic figure of merit ($Z{T}_{e}$ under constant relaxation time approximation). Not only the electronic part increases thermoelectric performance, but also the lattice contribution to the thermal conductivity decreases with compressive strain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
xc发布了新的文献求助10
4秒前
4秒前
INNOCENCE完成签到,获得积分10
5秒前
7秒前
sss发布了新的文献求助10
8秒前
科研通AI5应助活泼毛豆采纳,获得10
9秒前
10秒前
kinmke发布了新的文献求助10
12秒前
东方神齐发布了新的文献求助10
16秒前
丘比特应助CYY采纳,获得10
26秒前
26秒前
东方神齐完成签到,获得积分10
27秒前
时尚的哈密瓜完成签到,获得积分10
28秒前
29秒前
30秒前
xixiz1024发布了新的文献求助30
32秒前
大方从彤完成签到,获得积分10
33秒前
安静苞络完成签到 ,获得积分10
35秒前
36秒前
ding应助鳗鱼友琴采纳,获得10
37秒前
Shan发布了新的文献求助10
41秒前
桐桐应助xixiz1024采纳,获得10
42秒前
42秒前
44秒前
45秒前
SSSstriker完成签到,获得积分10
45秒前
nana完成签到 ,获得积分10
46秒前
47秒前
47秒前
老黑发布了新的文献求助10
49秒前
kinmke完成签到,获得积分10
52秒前
脑洞疼应助Shan采纳,获得10
52秒前
鳗鱼友琴发布了新的文献求助10
52秒前
wanci应助单纯的访冬采纳,获得10
55秒前
瑾沫流年完成签到,获得积分10
55秒前
59秒前
Cheung2121完成签到,获得积分20
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648