Energy, environment, and economic analyses on a novel hydrogen production method by electrified steam methane reforming with renewable energy accommodation

蒸汽重整 甲烷转化炉 制氢 可再生能源 甲烷 氢经济 工艺工程 烟气 高温电解 废物管理 环境科学 化学 电解 工程类 有机化学 电气工程 电极 物理化学 电解质
作者
Huchao Song,Yinhe Liu,Hao Bian,Mengfei Shen,Xiaolong Lin
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:258: 115513-115513 被引量:97
标识
DOI:10.1016/j.enconman.2022.115513
摘要

More and more attention has been paid to hydrogen due to its cleanity and high energy density. However, hydrogen production from conventional steam methane reforming has high CO2 emission and heat loss in the flue gas. Hydrogen from water electrolysis has the defects of high cost and low efficiency. Electrified steam methane reforming (E-SMR) process is proposed by integrating power to gas technology with steam methane reforming based on the principle of efficient electrothermal conversion and energy cascade utilization. Electrical equipment is used in the process to eliminate the above drawbacks and accommodate renewable electricity. The novel process is simulated by chemical equilibrium and mass-energy conservation methods and analyzed from energy, environment, and economy. The optimal performance of E-SMR processes is investigated by adjusting the steam carbon ratio and reforming temperature under appropriate pressure. The optimal thermal efficiency (97.27 %) is improved by 18 percentage points at least compared to current industrial steam methane reforming processes. The optimal electrical efficiency (88.68 %) is at least 11.48 percentage points higher than that of running commercial water electrolysis systems. The novel process achieves low carbon emission (even zero-emission with CCS) since the required reforming energy is electricity instead of combustion. The cost of the proposed process can be minimized to 2.47 $/kg H2 through economic analysis. This work may provide an efficient, low-carbon, and economical option for hydrogen production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大豌豆发布了新的文献求助10
刚刚
梨凉完成签到,获得积分10
2秒前
student发布了新的文献求助10
2秒前
5秒前
搜集达人应助水濑心源采纳,获得10
5秒前
669完成签到,获得积分10
6秒前
沙田的柚子完成签到 ,获得积分10
7秒前
惜寒完成签到 ,获得积分10
8秒前
8秒前
Behappy完成签到 ,获得积分10
9秒前
咖飞完成签到,获得积分10
9秒前
瑾玉完成签到,获得积分10
10秒前
成就的白羊完成签到,获得积分10
11秒前
wanli445完成签到,获得积分10
12秒前
azixiao完成签到,获得积分10
13秒前
八轩发布了新的文献求助10
14秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
HuFan1201完成签到 ,获得积分10
15秒前
1+1应助科研通管家采纳,获得10
15秒前
1351567822应助科研通管家采纳,获得50
15秒前
15秒前
奋斗的凡完成签到 ,获得积分10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
1+1应助科研通管家采纳,获得10
15秒前
HEIKU举报leaf求助涉嫌违规
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
16秒前
研友_Z6Q45n应助科研通管家采纳,获得10
16秒前
1+1应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093