Multiple Adverse Weather Conditions Adaptation for Object Detection via Causal Intervention

计算机科学 人工智能 目标检测 范畴变量 代表(政治) 特征提取 域适应 视觉对象识别的认知神经科学 机器学习 分割 模式识别(心理学) 数据挖掘 政治 政治学 分类器(UML) 法学
作者
Hua Zhang,Liqiang Xiao,Xiaochun Cao,Hassan Foroosh
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (3): 1742-1756 被引量:38
标识
DOI:10.1109/tpami.2022.3166765
摘要

Most state-of-the-art object detection methods have achieved impressive perfomrace on several public benchmarks, which are trained with high definition images. However, existing detectors are often sensitive to the visual variations and out-of-distribution data due to the domain gap caused by various confounders, e.g. the adverse weathre conditions. To bridge the gap, previous methods have been mainly exploring domain alignment, which requires to collect an amount of domain-specific training samples. In this paper, we introduce a novel domain adaptation model to discover a weather condition invariant feature representation. Specifically, we first employ a memory network to develop a confounder dictionary, which stores prototypes of object features under various scenarios. To guarantee the representativeness of each prototype in the dictionary, a dynamic item extraction strategy is used to update the memory dictionary. After that, we introduce a causal intervention reasoning module to explore the invariant representation of a specific object under different weather conditions. Finally, a categorical consistency regularization is used to constrain the similarities between categories in order to automatically search for the aligned instances among distinct domains. Experiments are conducted on several public benchmarks (RTTS, Foggy-Cityscapes, RID, and BDD 100K) with state-of-the-art performance achieved under multiple weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
4秒前
研友_LaOyQZ发布了新的文献求助30
5秒前
6秒前
6秒前
lzq发布了新的文献求助10
6秒前
CodeCraft应助温柔的秋柳采纳,获得10
7秒前
窦房结发布了新的文献求助10
8秒前
柠柠完成签到,获得积分10
8秒前
9秒前
momo发布了新的文献求助30
9秒前
dududu完成签到,获得积分10
10秒前
赘婿应助顾顾顾昊然采纳,获得10
10秒前
10秒前
本微尘发布了新的文献求助10
11秒前
11秒前
乌苏苏发布了新的文献求助10
11秒前
11秒前
耳冉完成签到 ,获得积分10
12秒前
张凡完成签到 ,获得积分10
14秒前
林中雀完成签到 ,获得积分10
14秒前
15秒前
lzq完成签到 ,获得积分10
15秒前
彭于晏应助Liu采纳,获得10
16秒前
NexusExplorer应助吃点奥利奥采纳,获得10
16秒前
huangqian发布了新的文献求助10
16秒前
17秒前
土土发布了新的文献求助10
17秒前
深情安青应助dududu采纳,获得10
18秒前
18秒前
Mason完成签到 ,获得积分10
19秒前
爱笑的野狼完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309504
求助须知:如何正确求助?哪些是违规求助? 4454082
关于积分的说明 13859234
捐赠科研通 4342002
什么是DOI,文献DOI怎么找? 2384332
邀请新用户注册赠送积分活动 1378790
关于科研通互助平台的介绍 1346889