亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning From Synthetic CT Images via Test-Time Training for Liver Tumor Segmentation

计算机科学 分割 人工智能 任务(项目管理) 推论 合成数据 图像分割 试验数据 机器学习 领域(数学分析) 模式识别(心理学) 计算机视觉 数学分析 数学 管理 经济 程序设计语言
作者
Fei Lyu,Mang Ye,J. Andy,Terry Cheuk‐Fung Yip,Grace Lai–Hung Wong,Pong C. Yuen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2510-2520 被引量:14
标识
DOI:10.1109/tmi.2022.3166230
摘要

Automatic liver tumor segmentation could offer assistance to radiologists in liver tumor diagnosis, and its performance has been significantly improved by recent deep learning based methods. These methods rely on large-scale well-annotated training datasets, but collecting such datasets is time-consuming and labor-intensive, which could hinder their performance in practical situations. Learning from synthetic data is an encouraging solution to address this problem. In our task, synthetic tumors can be injected to healthy images to form training pairs. However, directly applying the model trained using the synthetic tumor images on real test images performs poorly due to the domain shift problem. In this paper, we propose a novel approach, namely Synthetic-to-Real Test-Time Training (SR-TTT), to reduce the domain gap between synthetic training images and real test images. Specifically, we add a self-supervised auxiliary task, i.e. , two-step reconstruction, which takes the output of the main segmentation task as its input to build an explicit connection between these two tasks. Moreover, we design a scheduled mixture strategy to avoid error accumulation and bias explosion in the training process. During test time, we adapt the segmentation model to each test image with self-supervision from the auxiliary task so as to improve the inference performance. The proposed method is extensively evaluated on two public datasets for liver tumor segmentation. The experimental results demonstrate that our proposed SR-TTT can effectively mitigate the synthetic-to-real domain shift problem in the liver tumor segmentation task, and is superior to existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助nicaicai采纳,获得10
3秒前
6秒前
wdnyrrc发布了新的文献求助10
7秒前
王冠军发布了新的文献求助10
10秒前
Lendar完成签到 ,获得积分10
20秒前
jyy完成签到,获得积分10
21秒前
王冠军完成签到,获得积分10
24秒前
科研通AI5应助淡然的蚂蚁采纳,获得10
27秒前
33秒前
桐桐应助cyhcyh采纳,获得10
33秒前
39秒前
leslie完成签到 ,获得积分10
40秒前
43秒前
李李原上草完成签到 ,获得积分10
49秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
斯寜应助科研通管家采纳,获得20
53秒前
隐形曼青应助科研通管家采纳,获得10
54秒前
斯寜应助科研通管家采纳,获得10
54秒前
54秒前
斯寜应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
Xzh发布了新的文献求助10
1分钟前
cyhcyh完成签到,获得积分20
1分钟前
1分钟前
1分钟前
cyhcyh发布了新的文献求助10
1分钟前
研友_VZG7GZ应助cyhcyh采纳,获得10
1分钟前
2分钟前
wdnyrrc发布了新的文献求助10
2分钟前
wesley完成签到 ,获得积分10
2分钟前
你好好好完成签到,获得积分10
2分钟前
2分钟前
杨gj完成签到,获得积分10
2分钟前
杨gj发布了新的文献求助10
2分钟前
JD完成签到 ,获得积分10
2分钟前
科目三应助杨gj采纳,获得10
2分钟前
斯寜应助科研通管家采纳,获得20
2分钟前
HuiHui完成签到,获得积分10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212658
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667296
邀请新用户注册赠送积分活动 798086
科研通“疑难数据库(出版商)”最低求助积分说明 758215