Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation

癌症 生物信息学 计算生物学 鉴定(生物学) 医学 生物 基因 生物化学 内科学 植物
作者
Bao-Yue Zhang,Yi-Fu Zheng,Jun Zhao,De Kang,Zhe Wang,Lvjie Xu,Ai-Lin Liu,Guanhua Du
出处
期刊:Chinese Journal of Natural Medicines [Elsevier BV]
卷期号:20 (5): 332-351 被引量:12
标识
DOI:10.1016/s1875-5364(22)60180-8
摘要

Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes, and multi-target drugs provide a promising therapy idea for the treatment of cancer. Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs. In this paper, 50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database, and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time. Through the multi-target anti-cancer prediction system, some dominant fragments that act on multiple tumor-related targets were analyzed, which could be helpful in designing multi-target anti-cancer drugs. Anti-cancer traditional Chinese medicine (TCM) and its natural products were collected to form a TCM formula-based natural products library, and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system. As a result, alkaloids, flavonoids and terpenoids were predicted to act on multiple tumor-related targets. The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments. In conclusion, the multi-target anti-cancer prediction system is very effective and reliable, and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs. The anti-cancer natural compounds found in this paper will lay important information for further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉长的问晴完成签到,获得积分10
1秒前
1秒前
1秒前
eason应助Chara_kara采纳,获得30
4秒前
阔达黎云完成签到,获得积分10
5秒前
5秒前
惜名发布了新的文献求助10
5秒前
香蕉觅云应助郝耀东采纳,获得10
5秒前
FashionBoy应助高兴的风华采纳,获得10
7秒前
yang完成签到,获得积分10
7秒前
zkf完成签到,获得积分10
10秒前
某某发布了新的文献求助10
11秒前
12秒前
12秒前
冷冷暴力完成签到,获得积分10
14秒前
科研通AI5应助qmhx采纳,获得30
15秒前
17秒前
小姜发布了新的文献求助10
17秒前
111111111发布了新的文献求助10
18秒前
任飞羽应助bunny采纳,获得10
18秒前
蛇從革应助模糊老师采纳,获得30
22秒前
天天快乐应助lyulyuch221采纳,获得30
22秒前
22秒前
hhh发布了新的文献求助10
25秒前
111111111完成签到,获得积分10
28秒前
29秒前
打卡下班应助公冶飞风采纳,获得10
31秒前
31秒前
36秒前
griffon完成签到,获得积分10
39秒前
英吉利25发布了新的文献求助50
39秒前
布丁发布了新的文献求助10
40秒前
忧虑的慕山完成签到,获得积分10
42秒前
43秒前
45秒前
FashionBoy应助Joey采纳,获得30
45秒前
万能图书馆应助Pauline采纳,获得10
46秒前
慕青应助布丁采纳,获得10
46秒前
47秒前
48秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126678
求助须知:如何正确求助?哪些是违规求助? 3664292
关于积分的说明 11594046
捐赠科研通 3363624
什么是DOI,文献DOI怎么找? 1848311
邀请新用户注册赠送积分活动 912268
科研通“疑难数据库(出版商)”最低求助积分说明 827985