Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation

癌症 生物信息学 计算生物学 鉴定(生物学) 医学 生物 基因 生物化学 内科学 植物
作者
Bao-Yue Zhang,Yi-Fu Zheng,Jun Zhao,De Kang,Zhe Wang,Lvjie Xu,Ai-Lin Liu,Guanhua Du
出处
期刊:Chinese Journal of Natural Medicines [Elsevier BV]
卷期号:20 (5): 332-351 被引量:12
标识
DOI:10.1016/s1875-5364(22)60180-8
摘要

Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes, and multi-target drugs provide a promising therapy idea for the treatment of cancer. Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs. In this paper, 50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database, and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time. Through the multi-target anti-cancer prediction system, some dominant fragments that act on multiple tumor-related targets were analyzed, which could be helpful in designing multi-target anti-cancer drugs. Anti-cancer traditional Chinese medicine (TCM) and its natural products were collected to form a TCM formula-based natural products library, and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system. As a result, alkaloids, flavonoids and terpenoids were predicted to act on multiple tumor-related targets. The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments. In conclusion, the multi-target anti-cancer prediction system is very effective and reliable, and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs. The anti-cancer natural compounds found in this paper will lay important information for further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博士加油完成签到,获得积分10
刚刚
温文尔雅完成签到,获得积分10
刚刚
mingjie完成签到,获得积分10
1秒前
清风完成签到 ,获得积分10
1秒前
烟花应助Migrol采纳,获得10
1秒前
singber完成签到,获得积分10
1秒前
沉默傲芙完成签到,获得积分10
1秒前
AoAoo完成签到,获得积分10
2秒前
yongzaizhuigan完成签到,获得积分0
2秒前
一味愚完成签到,获得积分10
2秒前
pp完成签到,获得积分10
3秒前
gzj完成签到,获得积分10
5秒前
哈哈哈哈怪完成签到,获得积分10
5秒前
cn完成签到 ,获得积分10
5秒前
贾小闲完成签到,获得积分10
5秒前
soong完成签到 ,获得积分10
6秒前
QAQSS完成签到 ,获得积分10
6秒前
蜜蜂威士忌完成签到 ,获得积分10
8秒前
H1lb2rt完成签到 ,获得积分10
8秒前
LGZ完成签到 ,获得积分0
10秒前
母单花完成签到 ,获得积分10
10秒前
10秒前
幸福的手套完成签到 ,获得积分10
11秒前
12秒前
She完成签到,获得积分20
13秒前
ziyue发布了新的文献求助10
13秒前
水博士完成签到,获得积分10
14秒前
芽衣完成签到 ,获得积分10
14秒前
JamesPei应助fishhh采纳,获得10
14秒前
打打应助liuniuniu采纳,获得10
15秒前
喜悦香薇完成签到 ,获得积分10
15秒前
Haonan完成签到,获得积分10
17秒前
laihama完成签到,获得积分10
18秒前
ziyue完成签到,获得积分10
18秒前
pp发布了新的文献求助10
18秒前
win完成签到 ,获得积分10
19秒前
20秒前
冰销雪释完成签到,获得积分10
20秒前
21秒前
洁净之柔完成签到,获得积分10
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Friction Capacity of Piles Driven into Clay 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379721
关于积分的说明 10510250
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821413
科研通“疑难数据库(出版商)”最低求助积分说明 772615