亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey of deep learning approaches to image restoration

去模糊 计算机科学 人工智能 深度学习 图像复原 卷积神经网络 判别式 图像(数学) 机器学习 模式识别(心理学) 图像处理
作者
Jingwen Su,Boyan Xu,Hujun Yin
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:487: 46-65 被引量:83
标识
DOI:10.1016/j.neucom.2022.02.046
摘要

In this paper, we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques, led by convolutional neural networks, have received a great deal of attention in almost all areas of image processing, especially in image classification. However, image restoration is a fundamental and challenging topic and plays significant roles in image processing, understanding and representation. It typically addresses image deblurring, denoising, dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively, while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper, we offer a comparative study of deep learning techniques in image denoising, deblurring, dehazing, and super-resolution, and summarise the principles involved in these tasks from various supervised deep network architectures, residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis, we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally, we point out potential challenges and directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ww发布了新的文献求助10
1秒前
cyclone发布了新的文献求助10
3秒前
Sandy发布了新的文献求助10
5秒前
科研通AI5应助cyclone采纳,获得10
9秒前
我是站长才怪给twotwomi的求助进行了留言
24秒前
量子星尘发布了新的文献求助10
25秒前
44秒前
1分钟前
脑洞疼应助wjh采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
wjh发布了新的文献求助10
2分钟前
ww发布了新的文献求助10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
cyclone发布了新的文献求助10
3分钟前
灵巧的惜灵应助cyclone采纳,获得10
3分钟前
3分钟前
研友_5Y9775发布了新的文献求助10
3分钟前
玄音完成签到,获得积分10
4分钟前
4分钟前
ww发布了新的文献求助10
4分钟前
caden完成签到,获得积分10
4分钟前
4分钟前
隐形曼青应助可乐采纳,获得10
4分钟前
ww发布了新的文献求助10
4分钟前
4分钟前
可乐发布了新的文献求助10
4分钟前
ww发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015073
求助须知:如何正确求助?哪些是违规求助? 3555011
关于积分的说明 11317842
捐赠科研通 3288529
什么是DOI,文献DOI怎么找? 1812249
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983