清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MRI radiomics: A machine learning approach for the risk stratification of endometrial cancer patients

医学 特征选择 概化理论 人工智能 支持向量机 无线电技术 机器学习 成对比较 交叉验证 特征(语言学) 模式识别(心理学) 计算机科学 放射科 统计 数学 语言学 哲学
作者
Pier Paolo Mainenti,Arnaldo Stanzione,Renato Cuocolo,Renata Del Grosso,Roberta Danzi,Valeria Romeo,Antonio Raffone,Attilio Di Spiezio Sardo,Elena Giordano,Antonio Travaglino,Luigi Insabato,Mariano Scaglione,Simone Maurea,Arturo Brunetti
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:149: 110226-110226 被引量:30
标识
DOI:10.1016/j.ejrad.2022.110226
摘要

To investigate radiomics and machine learning (ML) as possible tools to enhance MRI-based risk stratification in patients with endometrial cancer (EC).From two institutions, 133 patients (Institution1 = 104 and Institution2 = 29) with EC and pre-operative MRI were retrospectively enrolled and divided in two a low-risk and a high-risk group according to EC stage and grade. T2-weighted (T2w) images were three-dimensionally annotated to obtain volumes of interest of the entire tumor. A PyRadiomics based and previously validated pipeline was used to extract radiomics features and perform feature selection. In particular, feature stability, variance and pairwise correlation were analyzed. Then, the least absolute shrinkage and selection operator technique and recursive feature elimination were used to obtain the final feature set. The performance of a Support Vector Machine (SVM) algorithm was assessed on the dataset from Institution 1 via 2-fold cross-validation. Then, the model was trained on the entire Institution 1 dataset and tested on the external test set from Institution 2.In total, 1197 radiomics features were extracted. After the exclusion of unstable, low variance and intercorrelated features least absolute shrinkage and selection operator and recursive feature elimination identified 4 features that were used to build the predictive ML model. It obtained an accuracy of 0.71 and 0.72 in the train and test sets respectively.Whole-lesion T2w-derived radiomics showed encouraging results and good generalizability for the identification of low-risk EC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nxw2xL完成签到,获得积分10
刚刚
muriel完成签到,获得积分10
11秒前
迢迢万里完成签到 ,获得积分10
15秒前
redamancy完成签到 ,获得积分10
44秒前
52秒前
lezbj99发布了新的文献求助10
58秒前
foyefeng完成签到 ,获得积分10
1分钟前
lezbj99完成签到,获得积分10
1分钟前
drhwang完成签到,获得积分10
1分钟前
阜睿完成签到 ,获得积分10
1分钟前
2分钟前
naczx完成签到,获得积分0
3分钟前
Axs完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
4分钟前
4分钟前
hairgod发布了新的文献求助10
5分钟前
繁荣的心情应助Jack80采纳,获得40
5分钟前
隐形曼青应助kiko采纳,获得10
5分钟前
sowhat完成签到 ,获得积分10
5分钟前
hairgod完成签到,获得积分10
5分钟前
Johnson完成签到 ,获得积分10
5分钟前
Emperor完成签到 ,获得积分0
5分钟前
111完成签到 ,获得积分10
5分钟前
5分钟前
kiko发布了新的文献求助10
6分钟前
kiko完成签到,获得积分10
6分钟前
清风拂山岗完成签到,获得积分10
6分钟前
obedVL完成签到,获得积分10
7分钟前
英俊的铭应助科研通管家采纳,获得10
8分钟前
忘忧Aquarius完成签到,获得积分10
8分钟前
Linden_bd完成签到 ,获得积分10
8分钟前
方白秋完成签到,获得积分10
9分钟前
9分钟前
xingsixs发布了新的文献求助200
9分钟前
深情安青应助CC采纳,获得10
9分钟前
迷茫的一代完成签到,获得积分10
10分钟前
科研通AI2S应助puzhongjiMiQ采纳,获得10
10分钟前
puzhongjiMiQ完成签到,获得积分10
10分钟前
隐形曼青应助科研通管家采纳,获得10
12分钟前
杪夏二八完成签到 ,获得积分10
12分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798505
求助须知:如何正确求助?哪些是违规求助? 3344027
关于积分的说明 10318337
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679682
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340