已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting miRNA–disease associations based on graph random propagation network and attention network

小RNA 疾病 图形 计算生物学 计算机科学 随机图 生物 医学 理论计算机科学 基因 病理 遗传学
作者
Tangbo Zhong,Zhengwei Li,Zhu‐Hong You,Ru Nie,Huan Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:32
标识
DOI:10.1093/bib/bbab589
摘要

Numerous experiments have demonstrated that abnormal expression of microRNAs (miRNAs) in organisms is often accompanied by the emergence of specific diseases. The research of miRNAs can promote the prevention and drug research of specific diseases. However, there are still many undiscovered links between miRNAs and diseases, which greatly limits the research of miRNAs. Therefore, for exploring the unknown miRNA-disease associations, we combine the graph random propagation network based on DropFeature with attention network to propose a novel deep learning model to predict the miRNA-disease associations (GRPAMDA). Specifically, we firstly construct the miRNA-disease heterogeneous graph based on miRNA-disease association information. Secondly, we adopt DropFeature to randomly delete the features of nodes in the graph and then perform propagation operations to enhance the features of miRNA and disease nodes. Thirdly, we employ the attention mechanism to fuse the features of random propagation by aggregating the enhanced neighbor features of miRNA and disease nodes. Finally, miRNA-disease association scores are generated by a fully connected layer. The average area under the curve of GRPAMDA model based on 5-fold cross-validation is 93.46% on HMDD v2.0. Case studies of esophageal tumors, lymphomas and prostate tumors show that 48, 47 and 46 of the top 50 miRNAs associated with these diseases are confirmed by dbDEMC and miR2Disease database, respectively. In short, the GRPAMDA model can be used as a valuable method to study miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无算浮白发布了新的文献求助10
刚刚
daihq3完成签到,获得积分10
刚刚
六沉发布了新的文献求助10
刚刚
huqingtao发布了新的文献求助10
2秒前
上官若男应助不见高山采纳,获得10
2秒前
wyx发布了新的文献求助10
3秒前
木子niko完成签到,获得积分10
3秒前
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
NexusExplorer应助自由的果汁采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Ava应助阿九采纳,获得10
6秒前
llllll完成签到 ,获得积分10
6秒前
huqingtao完成签到,获得积分10
7秒前
闪闪乘云关注了科研通微信公众号
7秒前
10秒前
科研通AI5应助自觉从云采纳,获得10
10秒前
孤独尔白应助hhh采纳,获得10
10秒前
15秒前
twk发布了新的文献求助10
19秒前
林小昀完成签到 ,获得积分10
20秒前
23秒前
缥缈的芷卉完成签到 ,获得积分10
23秒前
李爱国应助孟仲叔采纳,获得10
26秒前
28秒前
自觉从云发布了新的文献求助10
29秒前
twk完成签到,获得积分10
31秒前
珍妮完成签到,获得积分10
33秒前
yanghong发布了新的文献求助10
33秒前
iamhieuxk完成签到,获得积分10
34秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792341
求助须知:如何正确求助?哪些是违规求助? 3336534
关于积分的说明 10281314
捐赠科研通 3053247
什么是DOI,文献DOI怎么找? 1675545
邀请新用户注册赠送积分活动 803525
科研通“疑难数据库(出版商)”最低求助积分说明 761436