BTS-GAN: Computer-aided segmentation system for breast tumor using MRI and conditional adversarial networks

计算机科学 人工智能 分割 编码器 鉴别器 模式识别(心理学) 特征(语言学) 深度学习 图像分割 翻译(生物学) 发电机(电路理论) 计算机视觉 过程(计算) 电信 语言学 哲学 生物化学 化学 功率(物理) 物理 量子力学 探测器 信使核糖核酸 基因 操作系统
作者
Imran Ul Haq,Haider Ali,Hong Yu Wang,Lei Cui,Jun Feng
出处
期刊:Engineering Science and Technology, an International Journal [Elsevier BV]
卷期号:36: 101154-101154 被引量:5
标识
DOI:10.1016/j.jestch.2022.101154
摘要

Breast tumor is one of the most prominent indicators for the diagnosis of breast cancer. The precise segmentation of tumors is crucial for enhancing the accuracy of breast cancer detection. A physician’s assessment of the MRI scan is time-consuming and require a lot of human effort and expertise. Furthermore, traditional medical segmentation approaches frequently need prior information or manual feature extraction, resulting in a subjective diagnosis. Therefore, the development of an automated image segmentation approach is essential for clinical applications. This work presents BTS-GAN, an automatic breast tumor segmentation process using conditional GAN (cGAN) in Magnetic Resonance Imaging (MRI) scans. First, we used an encoder-decoder deep network with skip connections between encoder and decoder for the generator to increase the localization efficiency. Second, we utilized a parallel dilated convolution (PDC) module to retain the features of various sizes of masses and to effectively extract information about the masses’ edges and interior texture. Third, an extra classification-related constraint is included to the loss function of the cGAN for mitigating the hard-to-converge challenge in image-to-image (I2I) translation tasks based on classification. The generator side of our proposed model learns to detect the tumor and construct a binary mask, while the discriminator learns to distinguish between ground truth and synthetic masks, driving the generator to produce masks as genuine as possible. The experimental results demonstrate that our BTS-GAN is more efficient and reliable for breast tumor segmentation and outperform other segmentation techniques in terms of the IoU and Dice coefficient on the publicly available RIDER breast cancer MRI dataset. Our proposed model achieved an average IoU and Dice scores of 77% and 85% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的鼠标完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
今后应助乐乐乐乐乐乐采纳,获得10
1秒前
科目三应助乐乐乐乐乐乐采纳,获得10
1秒前
bc应助乐乐乐乐乐乐采纳,获得30
1秒前
1秒前
2秒前
李健应助乐乐乐乐乐乐采纳,获得100
2秒前
2秒前
2秒前
皮蛋发布了新的文献求助10
2秒前
小唐完成签到,获得积分10
3秒前
VDC发布了新的文献求助10
3秒前
完美世界应助dildil采纳,获得30
4秒前
connor发布了新的文献求助10
5秒前
6秒前
科研助手6应助悦耳的涫采纳,获得10
8秒前
8秒前
香蕉觅云应助月亮也赖床采纳,获得10
10秒前
科研通AI5应助SongNan_Ding采纳,获得10
11秒前
linlin发布了新的文献求助10
11秒前
饭团0814发布了新的文献求助10
12秒前
12秒前
12秒前
momo发布了新的文献求助10
12秒前
天天快乐应助1653采纳,获得10
13秒前
华仔应助shenglll采纳,获得30
14秒前
HaishanGuan完成签到,获得积分10
15秒前
16秒前
asdwe172009完成签到 ,获得积分10
16秒前
academician完成签到,获得积分10
16秒前
情怀应助积极的安青采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
18秒前
Orange应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790825
求助须知:如何正确求助?哪些是违规求助? 3335732
关于积分的说明 10276358
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803038
科研通“疑难数据库(出版商)”最低求助积分说明 761040