Machine Learning Models for Predicting In-Hospital Mortality in Acute Aortic Dissection Patients

医学 接收机工作特性 主动脉夹层 逻辑回归 决策树 死亡率 朴素贝叶斯分类器 解剖(医学) 血管造影 磁共振成像 放射科 内科学 心脏病学 机器学习 主动脉 支持向量机 计算机科学
作者
Tuo Guo,Zhuo Fang,Guifang Yang,Yang Zhou,Ning Ding,Wen Peng,Xun Gong,Huaping He,Xiaogao Pan,Xiangping Chai
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:8 被引量:28
标识
DOI:10.3389/fcvm.2021.727773
摘要

Background: Acute aortic dissection is a potentially fatal cardiovascular disorder associated with high mortality. However, current predictive models show a limited ability to efficiently and flexibly detect this mortality risk, and have been unable to discover a relationship between the mortality rate and certain variables. Thus, this study takes an artificial intelligence approach, whereby clinical data-driven machine learning was utilized to predict the in-hospital mortality of acute aortic dissection. Methods: Patients diagnosed with acute aortic dissection between January 2015 to December 2018 were voluntarily enrolled from the Second Xiangya Hospital of Central South University in the study. The diagnosis was defined by magnetic resonance angiography or computed tomography angiography, with an onset time of the symptoms being within 14 days. The analytical variables included demographic characteristics, physical examination, symptoms, clinical condition, laboratory results, and treatment strategies. The machine learning algorithms included logistic regression, decision tree, K nearest neighbor, Gaussian naive bayes, and extreme gradient boost (XGBoost). Evaluation of the predictive performance of the models was mainly achieved using the area under the receiver operating characteristic curve. SHapley Additive exPlanation was also implemented to interpret the final prediction model. Results: A total of 1,344 acute aortic dissection patients were recruited, including 1,071 (79.7%) patients in the survivor group and 273 (20.3%) patients in non-survivor group. The extreme gradient boost model was found to be the most effective model with the greatest area under the receiver operating characteristic curve (0.927, 95% CI: 0.860–0.968). The three most significant aspects of the extreme gradient boost importance matrix plot were treatment, type of acute aortic dissection, and ischemia-modified albumin levels. In the SHapley Additive exPlanation summary plot, medical treatment, type A acute aortic dissection, and higher ischemia-modified albumin level were shown to increase the risk of hospital-based mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明月长空完成签到 ,获得积分10
刚刚
爱搞科研的暴龙战士聂完成签到,获得积分20
1秒前
大个应助李垃宝采纳,获得30
1秒前
1秒前
Young完成签到,获得积分10
2秒前
gb发布了新的文献求助10
2秒前
2秒前
SciGPT应助nico采纳,获得10
2秒前
善良的函发布了新的文献求助10
2秒前
小杭76应助老八的嘴采纳,获得10
3秒前
搜集达人应助陈琳采纳,获得10
3秒前
4秒前
hi完成签到,获得积分10
4秒前
SciGPT应助洁净半梦采纳,获得10
4秒前
wj完成签到 ,获得积分10
4秒前
科目三应助半钱半夏采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
可爱的函函应助李周赫采纳,获得10
5秒前
淡人发布了新的文献求助10
5秒前
桐桐应助煎饼煎饼采纳,获得10
5秒前
顺利的惊蛰完成签到,获得积分10
6秒前
科研通AI6应助君子采纳,获得10
6秒前
zzq778发布了新的文献求助10
6秒前
田様应助侯康采纳,获得10
6秒前
三石发布了新的文献求助10
6秒前
6秒前
huiyue完成签到,获得积分10
8秒前
8秒前
Hello应助pumpkingua采纳,获得10
9秒前
adolph关注了科研通微信公众号
10秒前
wangjunrui关注了科研通微信公众号
11秒前
栗子发布了新的文献求助10
11秒前
11秒前
威武外套发布了新的文献求助10
11秒前
乐乐应助听寒采纳,获得10
11秒前
大模型应助云宝采纳,获得10
11秒前
对方正在讲话完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5362362
求助须知:如何正确求助?哪些是违规求助? 4492250
关于积分的说明 13986319
捐赠科研通 4395476
什么是DOI,文献DOI怎么找? 2414551
邀请新用户注册赠送积分活动 1407308
关于科研通互助平台的介绍 1381898