Federated FCM: Clustering Under Privacy Requirements

计算机科学 聚类分析 相关性(法律) 联合学习 过程(计算) 数据挖掘 集合(抽象数据类型) 模糊逻辑 机器学习 人工智能 服务器 模糊集 模式(计算机接口) 万维网 人机交互 操作系统 法学 程序设计语言 政治学
作者
Witold Pedrycz
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 3384-3388 被引量:36
标识
DOI:10.1109/tfuzz.2021.3105193
摘要

Federated learning addresses the issue of machine learning realized under constraints of privacy and security. While there have been intensive studies on building and analyzing federated regression models, this topic has not been analyzed so far in the area of fuzzy systems. To narrow down this gap, in this study, we formulate and solve a problem of unsupervised federated learning by designing an original federated FCM (F-FCM) clustering which could serve as a basis toward building a spectrum of fuzzy set constructs including rule-based models. Following a general client–server structure, where the local data residing with each client are not available globally and cannot be centralized (as commonly encountered in learning scenarios), the aim is to discover an overall structure across all data. The federated gradient-based optimization realized in the horizontal mode is developed. An overall learning process is derived, which is composed of communicating gradients coming from clients and providing updates of the prototypes at the server side and passing them on to the clients. It is also shown that the relevance of the globally constructed structure is conveniently assessed in terms of granular footprints of the prototypes constructed by the F-FCM. Some illustrative examples are covered to illustrate the efficiency of the developed federated algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Olivia发布了新的文献求助10
刚刚
view关注了科研通微信公众号
1秒前
科研通AI5应助飘逸书易采纳,获得10
1秒前
传奇3应助MrX采纳,获得10
1秒前
bkagyin应助Os1采纳,获得30
4秒前
mmmm完成签到,获得积分10
4秒前
4秒前
JamesPei应助Conccuc采纳,获得10
5秒前
6秒前
Lds发布了新的文献求助10
7秒前
8秒前
绿毛怪完成签到,获得积分10
8秒前
helium完成签到,获得积分10
8秒前
宋琪琪完成签到,获得积分10
9秒前
10秒前
七七七发布了新的文献求助10
10秒前
10秒前
莫道雪落奈何完成签到,获得积分10
11秒前
循环bug发布了新的文献求助10
11秒前
丘比特应助自然松采纳,获得10
12秒前
13秒前
14秒前
飘逸书易发布了新的文献求助10
16秒前
view发布了新的文献求助10
17秒前
科研通AI5应助w123采纳,获得10
17秒前
18秒前
汉堡包应助YAOYAO采纳,获得10
19秒前
19秒前
田様应助ZHY采纳,获得10
20秒前
五十一完成签到 ,获得积分10
20秒前
21秒前
21秒前
落后的听双完成签到 ,获得积分10
22秒前
格格巫完成签到,获得积分10
23秒前
123发布了新的文献求助10
23秒前
24秒前
CipherSage应助长生采纳,获得10
24秒前
赫连紫发布了新的文献求助10
24秒前
pipi发布了新的文献求助10
25秒前
Lds发布了新的文献求助10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225