数学
纯数学
等变映射
上同调
非交换几何
层
域代数上的
代数数
等变上同调
作者
Kondyrev Grigory,Prikhodko Artem
出处
期刊:arXiv: Algebraic Geometry
日期:2019-06-01
被引量:3
标识
DOI:10.4310/cjm.2021.v9.n4.a1
摘要
We use the formalism of traces in higher categories to prove a common generalization of the holomorphic Atiyah-Bott fixed point formula and the Grothendieck-Riemann-Roch theorem. The proof is quite different from the original one proposed by Grothendieck et al.: it relies on the interplay between self dualities of quasi- and ind- coherent sheaves on $X$ and formal deformation theory of Gaitsgory-Rozenblyum. In particular, we give a description of the Todd class in terms of the difference of two formal group structures on the derived loop scheme $\mathcal LX$. The equivariant case is reduced to the non-equivariant one by a variant of the Atiyah-Bott localization theorem.
科研通智能强力驱动
Strongly Powered by AbleSci AI