亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification

代谢组 化学 代谢物 代谢组学 相似性(几何) 鉴定(生物学) 计算生物学 结构相似性 串联质谱法 小桶 质谱法 液相色谱-质谱法 模式识别(心理学) 色谱法 人工智能 计算机科学 生物化学 生物 植物 基因表达 转录组 基因 图像(数学)
作者
Hongchao Ji,Yamei Xu,Hongmei Lü,Zhimin Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (9): 5629-5637 被引量:73
标识
DOI:10.1021/acs.analchem.8b05405
摘要

Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助wciphone采纳,获得10
2秒前
xinmindeng完成签到,获得积分10
3秒前
7秒前
雾色笼晓树苍完成签到 ,获得积分10
8秒前
小休完成签到 ,获得积分10
10秒前
无尘完成签到 ,获得积分10
13秒前
13秒前
活力南露发布了新的文献求助20
16秒前
LG发布了新的文献求助10
19秒前
俭朴山灵完成签到 ,获得积分10
21秒前
LG完成签到,获得积分20
29秒前
35秒前
jtksbf完成签到 ,获得积分10
37秒前
自信书文完成签到 ,获得积分10
39秒前
42秒前
xixiazhiwang完成签到 ,获得积分10
45秒前
45秒前
科目三应助LG采纳,获得10
46秒前
大壮完成签到,获得积分10
47秒前
李亚彤发布了新的文献求助10
47秒前
49秒前
星辰大海应助jam采纳,获得10
50秒前
bynowcc发布了新的文献求助10
53秒前
吃鲨鱼的小虾米完成签到 ,获得积分10
57秒前
bynowcc完成签到,获得积分10
1分钟前
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
伶俐惜萱发布了新的文献求助10
1分钟前
烟花应助绿柏采纳,获得10
1分钟前
eye关闭了eye文献求助
1分钟前
情怀应助稳重的泽洋采纳,获得10
1分钟前
1分钟前
eye驳回了大白应助
1分钟前
大熊完成签到 ,获得积分10
1分钟前
up325完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469990
求助须知:如何正确求助?哪些是违规求助? 4572966
关于积分的说明 14337858
捐赠科研通 4499845
什么是DOI,文献DOI怎么找? 2465425
邀请新用户注册赠送积分活动 1453770
关于科研通互助平台的介绍 1428347