亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Day-ahead load forecast using random forest and expert input selection

随机森林 过程(计算) 集合(抽象数据类型) 电力市场 电力系统 期限(时间) 计算机科学 工业工程 可再生能源 运筹学 功率(物理) 数据挖掘 人工智能 工程类 电气工程 物理 操作系统 量子力学 程序设计语言
作者
Ali Lahouar,Jaleleddine Ben Hadj Slama
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:103: 1040-1051 被引量:302
标识
DOI:10.1016/j.enconman.2015.07.041
摘要

Abstract The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
24秒前
Treasure98发布了新的文献求助10
25秒前
28秒前
量子星尘发布了新的文献求助10
31秒前
佟蓝血发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
深情安青应助dlm采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Treasure98发布了新的文献求助10
2分钟前
dlm发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
霍三石发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
aman发布了新的文献求助10
3分钟前
搜集达人应助霍三石采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
郗妫完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助20
4分钟前
MeSs完成签到 ,获得积分10
4分钟前
今后应助Treasure98采纳,获得10
4分钟前
4分钟前
Treasure98发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
chuan发布了新的文献求助10
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
情怀应助chuan采纳,获得10
5分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3878492
求助须知:如何正确求助?哪些是违规求助? 3421054
关于积分的说明 10721446
捐赠科研通 3145644
什么是DOI,文献DOI怎么找? 1735827
邀请新用户注册赠送积分活动 837917
科研通“疑难数据库(出版商)”最低求助积分说明 783476