稳健性(进化)
数学优化
稳健优化
约束(计算机辅助设计)
圆锥截面
集合(抽象数据类型)
非线性系统
鲁棒控制
可行区
数学
最优化问题
约束优化
度量(数据仓库)
非线性规划
功能(生物学)
计算机科学
数据挖掘
物理
几何学
基因
生物
进化生物学
量子力学
化学
生物化学
程序设计语言
作者
Aharon Ben‐Tal,R.C.M. Brekelmans,Dick den Hertog,Jean-Philippe Vial
出处
期刊:Informs Journal on Computing
日期:2017-04-12
卷期号:29 (2): 350-366
被引量:41
标识
DOI:10.1287/ijoc.2016.0735
摘要
Robust optimization is a methodology that can be applied to problems that are affected by uncertainty in their parameters. The classical robust counterpart of a problem requires the solution to be feasible for all uncertain parameter values in a so-called uncertainty set and offers no guarantees for parameter values outside this uncertainty set. The globalized robust counterpart (GRC) extends this idea by allowing controlled constraint violations in a larger uncertainty set. The constraint violations are controlled by the distance of the parameter from the original uncertainty set. We derive tractable GRCs that extend the initial GRCs in the literature: our GRC is applicable to nonlinear constraints instead of only linear or conic constraints, and the GRC is more flexible with respect to both the uncertainty set and distance measure function, which are used to control the constraint violations. In addition, we present a GRC approach that can be used to provide an extended trade-off overview between the objective value and several robustness measures.
科研通智能强力驱动
Strongly Powered by AbleSci AI