Double/debiased machine learning for treatment and structural parameters

过度拟合 估计员 正规化(语言学) 干扰参数 数学 算法 统计 人工智能 应用数学 计算机科学 人工神经网络
作者
Victor Chernozhukov,Denis Chetverikov,Mert Demirer,Esther Duflo,Christian Hansen,Whitney K. Newey,James M. Robins
出处
期刊:Econometrics Journal [Oxford University Press]
卷期号:21 (1): C1-C68 被引量:1517
标识
DOI:10.1111/ectj.12097
摘要

We revisit the classic semi‐parametric problem of inference on a low‐dimensional parameter θ0 in the presence of high‐dimensional nuisance parameters η0. We depart from the classical setting by allowing for η0 to be so high‐dimensional that the traditional assumptions (e.g. Donsker properties) that limit complexity of the parameter space for this object break down. To estimate η0, we consider the use of statistical or machine learning (ML) methods, which are particularly well suited to estimation in modern, very high‐dimensional cases. ML methods perform well by employing regularization to reduce variance and trading off regularization bias with overfitting in practice. However, both regularization bias and overfitting in estimating η0 cause a heavy bias in estimators of θ0 that are obtained by naively plugging ML estimators of η0 into estimating equations for θ0. This bias results in the naive estimator failing to be N−1/2 consistent, where N is the sample size. We show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ0 can be removed by using two simple, yet critical, ingredients: (1) using Neyman‐orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters to estimate θ0; (2) making use of cross‐fitting, which provides an efficient form of data‐splitting. We call the resulting set of methods double or debiased ML (DML). We verify that DML delivers point estimators that concentrate in an N−1/2‐neighbourhood of the true parameter values and are approximately unbiased and normally distributed, which allows construction of valid confidence statements. The generic statistical theory of DML is elementary and simultaneously relies on only weak theoretical requirements, which will admit the use of a broad array of modern ML methods for estimating the nuisance parameters, such as random forests, lasso, ridge, deep neural nets, boosted trees, and various hybrids and ensembles of these methods. We illustrate the general theory by applying it to provide theoretical properties of the following: DML applied to learn the main regression parameter in a partially linear regression model; DML applied to learn the coefficient on an endogenous variable in a partially linear instrumental variables model; DML applied to learn the average treatment effect and the average treatment effect on the treated under unconfoundedness; DML applied to learn the local average treatment effect in an instrumental variables setting. In addition to these theoretical applications, we also illustrate the use of DML in three empirical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
肖旻发布了新的文献求助10
1秒前
dengdeng发布了新的文献求助30
2秒前
Kasom完成签到 ,获得积分10
3秒前
3秒前
3秒前
达乐发布了新的文献求助10
5秒前
木子发布了新的文献求助10
6秒前
后会无期完成签到,获得积分10
6秒前
7秒前
9秒前
10秒前
qiqi完成签到 ,获得积分10
11秒前
耿耿完成签到 ,获得积分10
11秒前
Winter完成签到,获得积分10
12秒前
lhy完成签到,获得积分10
13秒前
14秒前
孙刚完成签到 ,获得积分10
14秒前
15秒前
16秒前
Pony发布了新的文献求助10
19秒前
Neo应助JiadePeng采纳,获得10
19秒前
冷静映寒发布了新的文献求助10
20秒前
YL完成签到 ,获得积分10
22秒前
愉快的老三完成签到,获得积分10
23秒前
八九寺完成签到,获得积分10
26秒前
28秒前
酥脆多汁的大油条完成签到,获得积分10
28秒前
lqllll完成签到,获得积分10
29秒前
30秒前
大个应助干冷安采纳,获得10
33秒前
33秒前
研友_nqr2pZ完成签到,获得积分10
35秒前
达乐发布了新的文献求助10
36秒前
36秒前
碑海北发布了新的文献求助10
36秒前
小二郎应助专一的珩采纳,获得10
39秒前
1752795896完成签到,获得积分10
43秒前
47秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171129
求助须知:如何正确求助?哪些是违规求助? 3706599
关于积分的说明 11695134
捐赠科研通 3392446
什么是DOI,文献DOI怎么找? 1860702
邀请新用户注册赠送积分活动 920531
科研通“疑难数据库(出版商)”最低求助积分说明 832740