Double/debiased machine learning for treatment and structural parameters

过度拟合 估计员 正规化(语言学) 干扰参数 数学 算法 统计 人工智能 应用数学 计算机科学 人工神经网络
作者
Victor Chernozhukov,Denis Chetverikov,Mert Demirer,Esther Duflo,Christian Hansen,Whitney K. Newey,James M. Robins
出处
期刊:Econometrics Journal [Oxford University Press]
卷期号:21 (1): C1-C68 被引量:1360
标识
DOI:10.1111/ectj.12097
摘要

We revisit the classic semi‐parametric problem of inference on a low‐dimensional parameter θ0 in the presence of high‐dimensional nuisance parameters η0. We depart from the classical setting by allowing for η0 to be so high‐dimensional that the traditional assumptions (e.g. Donsker properties) that limit complexity of the parameter space for this object break down. To estimate η0, we consider the use of statistical or machine learning (ML) methods, which are particularly well suited to estimation in modern, very high‐dimensional cases. ML methods perform well by employing regularization to reduce variance and trading off regularization bias with overfitting in practice. However, both regularization bias and overfitting in estimating η0 cause a heavy bias in estimators of θ0 that are obtained by naively plugging ML estimators of η0 into estimating equations for θ0. This bias results in the naive estimator failing to be N−1/2 consistent, where N is the sample size. We show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ0 can be removed by using two simple, yet critical, ingredients: (1) using Neyman‐orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters to estimate θ0; (2) making use of cross‐fitting, which provides an efficient form of data‐splitting. We call the resulting set of methods double or debiased ML (DML). We verify that DML delivers point estimators that concentrate in an N−1/2‐neighbourhood of the true parameter values and are approximately unbiased and normally distributed, which allows construction of valid confidence statements. The generic statistical theory of DML is elementary and simultaneously relies on only weak theoretical requirements, which will admit the use of a broad array of modern ML methods for estimating the nuisance parameters, such as random forests, lasso, ridge, deep neural nets, boosted trees, and various hybrids and ensembles of these methods. We illustrate the general theory by applying it to provide theoretical properties of the following: DML applied to learn the main regression parameter in a partially linear regression model; DML applied to learn the coefficient on an endogenous variable in a partially linear instrumental variables model; DML applied to learn the average treatment effect and the average treatment effect on the treated under unconfoundedness; DML applied to learn the local average treatment effect in an instrumental variables setting. In addition to these theoretical applications, we also illustrate the use of DML in three empirical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YingxueRen完成签到,获得积分10
1秒前
蜗牛完成签到,获得积分10
2秒前
7秒前
13秒前
16秒前
小熊完成签到 ,获得积分10
17秒前
pluto应助100采纳,获得10
19秒前
22秒前
SQC发布了新的文献求助60
28秒前
纯真雁菱完成签到,获得积分10
29秒前
32秒前
满唐完成签到 ,获得积分10
32秒前
云岫完成签到,获得积分10
36秒前
科研小白发布了新的文献求助10
36秒前
38秒前
Sew东坡完成签到,获得积分10
39秒前
KYT完成签到,获得积分10
39秒前
40秒前
流氓恐龙完成签到,获得积分10
41秒前
june12138完成签到 ,获得积分10
41秒前
糊涂的元珊完成签到 ,获得积分10
44秒前
qiaomai发布了新的文献求助10
46秒前
hhhhhhhhhh完成签到 ,获得积分10
46秒前
Ade阿德完成签到 ,获得积分10
48秒前
TTT0530完成签到,获得积分10
48秒前
脑洞疼应助科研小白采纳,获得10
50秒前
Lucas应助nesire采纳,获得10
52秒前
52秒前
55秒前
8R60d8应助夺命猪头采纳,获得10
56秒前
太阳发布了新的文献求助10
58秒前
58秒前
1分钟前
兜兜发布了新的文献求助20
1分钟前
脑洞疼应助太阳采纳,获得10
1分钟前
安安完成签到,获得积分10
1分钟前
彭于晏应助τ涛采纳,获得10
1分钟前
Xingkun_li发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助pray采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321973
关于积分的说明 10208299
捐赠科研通 3037256
什么是DOI,文献DOI怎么找? 1666628
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872