Double/debiased machine learning for treatment and structural parameters

过度拟合 估计员 正规化(语言学) 干扰参数 数学 算法 统计 人工智能 应用数学 计算机科学 人工神经网络
作者
Victor Chernozhukov,Denis Chetverikov,Mert Demirer,Esther Duflo,Christian Hansen,Whitney K. Newey,James M. Robins
出处
期刊:Econometrics Journal [Oxford University Press]
卷期号:21 (1): C1-C68 被引量:1894
标识
DOI:10.1111/ectj.12097
摘要

We revisit the classic semi‐parametric problem of inference on a low‐dimensional parameter θ0 in the presence of high‐dimensional nuisance parameters η0. We depart from the classical setting by allowing for η0 to be so high‐dimensional that the traditional assumptions (e.g. Donsker properties) that limit complexity of the parameter space for this object break down. To estimate η0, we consider the use of statistical or machine learning (ML) methods, which are particularly well suited to estimation in modern, very high‐dimensional cases. ML methods perform well by employing regularization to reduce variance and trading off regularization bias with overfitting in practice. However, both regularization bias and overfitting in estimating η0 cause a heavy bias in estimators of θ0 that are obtained by naively plugging ML estimators of η0 into estimating equations for θ0. This bias results in the naive estimator failing to be N−1/2 consistent, where N is the sample size. We show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ0 can be removed by using two simple, yet critical, ingredients: (1) using Neyman‐orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters to estimate θ0; (2) making use of cross‐fitting, which provides an efficient form of data‐splitting. We call the resulting set of methods double or debiased ML (DML). We verify that DML delivers point estimators that concentrate in an N−1/2‐neighbourhood of the true parameter values and are approximately unbiased and normally distributed, which allows construction of valid confidence statements. The generic statistical theory of DML is elementary and simultaneously relies on only weak theoretical requirements, which will admit the use of a broad array of modern ML methods for estimating the nuisance parameters, such as random forests, lasso, ridge, deep neural nets, boosted trees, and various hybrids and ensembles of these methods. We illustrate the general theory by applying it to provide theoretical properties of the following: DML applied to learn the main regression parameter in a partially linear regression model; DML applied to learn the coefficient on an endogenous variable in a partially linear instrumental variables model; DML applied to learn the average treatment effect and the average treatment effect on the treated under unconfoundedness; DML applied to learn the local average treatment effect in an instrumental variables setting. In addition to these theoretical applications, we also illustrate the use of DML in three empirical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Arjun发布了新的文献求助10
2秒前
冬瓜完成签到,获得积分10
2秒前
ekdjk完成签到,获得积分10
3秒前
林琳发布了新的文献求助10
4秒前
HEHNJJ完成签到,获得积分10
4秒前
追尾的猫发布了新的文献求助10
4秒前
xpy发布了新的文献求助10
4秒前
5秒前
5秒前
起风了完成签到,获得积分10
5秒前
619805092完成签到,获得积分10
6秒前
所所应助坦率白竹采纳,获得10
6秒前
7秒前
8秒前
耶耶完成签到,获得积分10
8秒前
8秒前
起风了发布了新的文献求助10
8秒前
8秒前
黄jw完成签到 ,获得积分10
8秒前
9秒前
9秒前
顾矜应助huanir99采纳,获得10
9秒前
冷静战斗机完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
王不凡发布了新的文献求助10
11秒前
11秒前
Lw2222发布了新的文献求助10
11秒前
healer完成签到,获得积分10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
迷路飞绿完成签到,获得积分10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560