Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics

视神经脊髓炎 医学 磁共振成像 多发性硬化 等级间信度 核医学 放射科 心理学 精神科 评定量表 发展心理学
作者
Maria A. Rocca,Nicoletta Anzalone,Loredana Storelli,Anna Del Poggio,Laura Cacciaguerra,Angelo A. Manfredi,Alessandro Meani,Massimo Filippi
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (4): 252-260 被引量:38
标识
DOI:10.1097/rli.0000000000000735
摘要

The aims of this study were to present a deep learning approach for the automated classification of multiple sclerosis and its mimics and compare model performance with that of 2 expert neuroradiologists.A total of 268 T2-weighted and T1-weighted brain magnetic resonance imagin scans were retrospectively collected from patients with migraine (n = 56), multiple sclerosis (n = 70), neuromyelitis optica spectrum disorders (n = 91), and central nervous system vasculitis (n = 51). The neural network architecture, trained on 178 scans, was based on a cascade of 4 three-dimensional convolutional layers, followed by a fully dense layer after feature extraction. The ability of the final algorithm to correctly classify the diseases in an independent test set of 90 scans was compared with that of the neuroradiologists.The interrater agreement was 84.9% (Cohen κ = 0.78, P < 0.001). In the test set, deep learning and expert raters reached the highest diagnostic accuracy in multiple sclerosis (98.8% vs 72.8%, P < 0.001, for rater 1; and 81.8%, P < 0.001, for rater 2) and the lowest in neuromyelitis optica spectrum disorders (88.6% vs 4.4%, P < 0.001, for both raters), whereas they achieved intermediate values for migraine (92.2% vs 53%, P = 0.03, for rater 1; and 64.8%, P = 0.01, for rater 2) and vasculitis (92.1% vs 54.6%, P = 0.3, for rater 1; and 45.5%, P = 0.2, for rater 2). The overall performance of the automated method exceeded that of expert raters, with the worst misdiagnosis when discriminating between neuromyelitis optica spectrum disorders and vasculitis or migraine.A neural network performed better than expert raters in terms of accuracy in classifying white matter disorders from magnetic resonance imaging and may help in their diagnostic work-up.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪碧发布了新的文献求助10
1秒前
脑洞疼应助陈隆采纳,获得10
1秒前
自信问枫发布了新的文献求助10
1秒前
领导范儿应助张洁采纳,获得30
6秒前
Xiaopan完成签到 ,获得积分10
6秒前
寻123发布了新的文献求助10
9秒前
科研通AI5应助自信问枫采纳,获得10
9秒前
希望天下0贩的0应助小猪采纳,获得30
13秒前
17秒前
张二十八发布了新的文献求助10
21秒前
三水完成签到 ,获得积分10
21秒前
Jasper应助肖战圈外女友采纳,获得10
22秒前
深情安青应助大树先生采纳,获得10
22秒前
23秒前
自信问枫完成签到,获得积分20
24秒前
27秒前
Mr.Jian完成签到,获得积分0
28秒前
314gjj完成签到,获得积分10
28秒前
30秒前
小花排草应助山水之乐采纳,获得20
31秒前
符文师应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
符文师应助科研通管家采纳,获得10
32秒前
情怀应助科研通管家采纳,获得10
32秒前
顾矜应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
33秒前
小二郎应助华猴猴采纳,获得10
36秒前
314gjj发布了新的文献求助10
36秒前
37秒前
乐乐应助top采纳,获得10
37秒前
豪的花花完成签到,获得积分10
41秒前
42秒前
42秒前
SciGPT应助liuch采纳,获得10
44秒前
华猴猴完成签到,获得积分10
45秒前
一只小锦李完成签到,获得积分10
46秒前
46秒前
47秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165855
求助须知:如何正确求助?哪些是违规求助? 3701529
关于积分的说明 11685963
捐赠科研通 3390132
什么是DOI,文献DOI怎么找? 1859244
邀请新用户注册赠送积分活动 919597
科研通“疑难数据库(出版商)”最低求助积分说明 832229