Learning Hierarchical Attention for Weakly-Supervised Chest X-Ray Abnormality Localization and Diagnosis

可解释性 计算机科学 人工智能 机器学习 异常 医学影像学 任务(项目管理) 可扩展性 深度学习 钥匙(锁) 医学 计算机安全 管理 数据库 精神科 经济
作者
Xi Ouyang,Srikrishna Karanam,Ziyan Wu,Terrence Chen,Jiayu Huo,Xiang Sean Zhou,Qian Wang,Jie‐Zhi Cheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (10): 2698-2710 被引量:97
标识
DOI:10.1109/tmi.2020.3042773
摘要

We consider the problem of abnormality localization for clinical applications. While deep learning has driven much recent progress in medical imaging, many clinical challenges are not fully addressed, limiting its broader usage. While recent methods report high diagnostic accuracies, physicians have concerns trusting these algorithm results for diagnostic decision-making purposes because of a general lack of algorithm decision reasoning and interpretability. One potential way to address this problem is to further train these models to localize abnormalities in addition to just classifying them. However, doing this accurately will require a large amount of disease localization annotations by clinical experts, a task that is prohibitively expensive to accomplish for most applications. In this work, we take a step towards addressing these issues by means of a new attention-driven weakly supervised algorithm comprising a hierarchical attention mining framework that unifies activation- and gradient-based visual attention in a holistic manner. Our key algorithmic innovations include the design of explicit ordinal attention constraints, enabling principled model training in a weakly-supervised fashion, while also facilitating the generation of visual-attention-driven model explanations by means of localization cues. On two large-scale chest X-ray datasets (NIH ChestX-ray14 and CheXpert), we demonstrate significant localization performance improvements over the current state of the art while also achieving competitive classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干饭选手又困了完成签到 ,获得积分10
1秒前
太清完成签到 ,获得积分10
2秒前
9秒前
12秒前
keji发布了新的文献求助10
17秒前
19秒前
20秒前
wkjfh应助踏实凡阳采纳,获得10
20秒前
Owen应助YaoJunyu采纳,获得30
22秒前
wkjfh应助义气睿渊采纳,获得10
23秒前
Taro完成签到 ,获得积分10
23秒前
23秒前
sje发布了新的文献求助10
23秒前
26秒前
28秒前
风继续吹发布了新的文献求助20
29秒前
rayce发布了新的文献求助20
30秒前
qianmiao发布了新的文献求助30
30秒前
小二郎应助小宋爱科研采纳,获得10
31秒前
Ava应助老谢采纳,获得10
32秒前
cup发布了新的文献求助10
32秒前
35秒前
阿王完成签到,获得积分10
36秒前
烟沙完成签到 ,获得积分10
37秒前
banana发布了新的文献求助10
37秒前
38秒前
饱满一手完成签到 ,获得积分10
39秒前
给我个二硫碘化钾完成签到,获得积分10
39秒前
pianoboy完成签到,获得积分10
40秒前
ping发布了新的文献求助10
40秒前
41秒前
桐桐应助ma采纳,获得10
41秒前
李健的粉丝团团长应助Fx采纳,获得10
45秒前
45秒前
46秒前
47秒前
47秒前
CodeCraft应助亮仔采纳,获得10
48秒前
48秒前
JamesPei应助陈龙采纳,获得10
49秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942373
求助须知:如何正确求助?哪些是违规求助? 3487634
关于积分的说明 11044494
捐赠科研通 3218054
什么是DOI,文献DOI怎么找? 1778725
邀请新用户注册赠送积分活动 864373
科研通“疑难数据库(出版商)”最低求助积分说明 799438