可解释性
计算机科学
人工智能
机器学习
异常
医学影像学
任务(项目管理)
可扩展性
深度学习
钥匙(锁)
医学
计算机安全
管理
数据库
精神科
经济
作者
Xi Ouyang,Srikrishna Karanam,Ziyan Wu,Terrence Chen,Jiayu Huo,Xiang Sean Zhou,Qian Wang,Jie‐Zhi Cheng
标识
DOI:10.1109/tmi.2020.3042773
摘要
We consider the problem of abnormality localization for clinical applications. While deep learning has driven much recent progress in medical imaging, many clinical challenges are not fully addressed, limiting its broader usage. While recent methods report high diagnostic accuracies, physicians have concerns trusting these algorithm results for diagnostic decision-making purposes because of a general lack of algorithm decision reasoning and interpretability. One potential way to address this problem is to further train these models to localize abnormalities in addition to just classifying them. However, doing this accurately will require a large amount of disease localization annotations by clinical experts, a task that is prohibitively expensive to accomplish for most applications. In this work, we take a step towards addressing these issues by means of a new attention-driven weakly supervised algorithm comprising a hierarchical attention mining framework that unifies activation- and gradient-based visual attention in a holistic manner. Our key algorithmic innovations include the design of explicit ordinal attention constraints, enabling principled model training in a weakly-supervised fashion, while also facilitating the generation of visual-attention-driven model explanations by means of localization cues. On two large-scale chest X-ray datasets (NIH ChestX-ray14 and CheXpert), we demonstrate significant localization performance improvements over the current state of the art while also achieving competitive classification performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI