Bayesian model selection in theM-open setting — Approximate posterior inference and subsampling for efficient large-scale leave-one-out cross-validation via the difference estimator

贝叶斯概率 选型 贝叶斯推理 计算机科学 数学 算法 人工智能 机器学习 统计
作者
Riko Kelter
出处
期刊:Journal of Mathematical Psychology [Elsevier BV]
卷期号:100: 102474-102474 被引量:12
标识
DOI:10.1016/j.jmp.2020.102474
摘要

Comparison of competing statistical models is an essential part of psychological research. From a Bayesian perspective, various approaches to model comparison and selection have been proposed in the literature. However, the applicability of these approaches depends on the assumptions about the model space M. Also, traditional methods like leave-one-out cross-validation (LOO-CV) estimate the expected log predictive density (ELPD) of a model to investigate how the model generalises out-of-sample, and quickly become computationally inefficient when sample size becomes large. Here, a tutorial on Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) is provided, which is computationally more efficient. It is shown how Bayesian model selection can be scaled efficiently for big data via PSIS-LOO-CV in combination with approximate posterior inference and probability-proportional-to-size subsampling. First, several model views and the available Bayesian model comparison methods in each are discussed. The Bayesian logistic regression model is then used as a running example to show how to apply the method in practice, and demonstrate that it provides similarly accurate ELPD estimates like LOO-CV or information criteria. Subsequently, the power and exponential law models relating reaction times to practice are used to demonstrate the approach with more complex models. Guidance is provided how to compare competing models based on the ELPD estimates and how to conduct posterior predictive checks to safeguard against overconfidence in one of the models under consideration. The intended audience are researchers who practice mathematical modelling and comparison, possibly with large datasets, and who are well acquainted to Bayesian statistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尛瞐慶成发布了新的文献求助10
刚刚
yuanletong完成签到 ,获得积分10
2秒前
hui完成签到,获得积分10
6秒前
李健的小迷弟应助something采纳,获得10
6秒前
7秒前
黑苹果完成签到,获得积分10
7秒前
充电宝应助知足的憨人*-*采纳,获得10
9秒前
yao发布了新的文献求助10
11秒前
librahapper完成签到,获得积分10
11秒前
12秒前
独行者完成签到,获得积分10
15秒前
Jaho完成签到,获得积分10
17秒前
一轮太阳和幻想完成签到,获得积分10
17秒前
18秒前
珂伟完成签到,获得积分10
23秒前
23秒前
AaronDon发布了新的文献求助50
25秒前
26秒前
27秒前
晓雯完成签到,获得积分10
29秒前
我要发核心完成签到 ,获得积分10
30秒前
断章发布了新的文献求助30
30秒前
33秒前
35秒前
逝者如斯只是看着完成签到,获得积分10
35秒前
Foch完成签到,获得积分10
38秒前
Flynn完成签到 ,获得积分10
38秒前
Foch发布了新的文献求助10
40秒前
41秒前
酥糖完成签到,获得积分10
41秒前
43秒前
时聿发布了新的文献求助10
45秒前
大模型应助Fancy采纳,获得30
50秒前
阮人雄发布了新的文献求助10
56秒前
笔墨留香完成签到,获得积分10
1分钟前
无花果应助断章采纳,获得10
1分钟前
时聿完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助自由采纳,获得10
1分钟前
Luchy完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315