Bayesian model selection in theM-open setting — Approximate posterior inference and subsampling for efficient large-scale leave-one-out cross-validation via the difference estimator

贝叶斯概率 选型 贝叶斯推理 计算机科学 数学 算法 人工智能 机器学习 统计
作者
Riko Kelter
出处
期刊:Journal of Mathematical Psychology [Elsevier BV]
卷期号:100: 102474-102474 被引量:12
标识
DOI:10.1016/j.jmp.2020.102474
摘要

Comparison of competing statistical models is an essential part of psychological research. From a Bayesian perspective, various approaches to model comparison and selection have been proposed in the literature. However, the applicability of these approaches depends on the assumptions about the model space M. Also, traditional methods like leave-one-out cross-validation (LOO-CV) estimate the expected log predictive density (ELPD) of a model to investigate how the model generalises out-of-sample, and quickly become computationally inefficient when sample size becomes large. Here, a tutorial on Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) is provided, which is computationally more efficient. It is shown how Bayesian model selection can be scaled efficiently for big data via PSIS-LOO-CV in combination with approximate posterior inference and probability-proportional-to-size subsampling. First, several model views and the available Bayesian model comparison methods in each are discussed. The Bayesian logistic regression model is then used as a running example to show how to apply the method in practice, and demonstrate that it provides similarly accurate ELPD estimates like LOO-CV or information criteria. Subsequently, the power and exponential law models relating reaction times to practice are used to demonstrate the approach with more complex models. Guidance is provided how to compare competing models based on the ELPD estimates and how to conduct posterior predictive checks to safeguard against overconfidence in one of the models under consideration. The intended audience are researchers who practice mathematical modelling and comparison, possibly with large datasets, and who are well acquainted to Bayesian statistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助帅气的樱桃采纳,获得10
2秒前
Yiling发布了新的文献求助10
2秒前
3秒前
合法的天空完成签到 ,获得积分10
4秒前
6秒前
Hello应助刘家宁采纳,获得10
6秒前
欢喜的靖雁完成签到,获得积分10
6秒前
6秒前
7秒前
博修发布了新的文献求助10
7秒前
搜集达人应助小可采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
lili完成签到,获得积分10
11秒前
Lumengsheng发布了新的文献求助10
12秒前
聪明蛋发布了新的文献求助30
12秒前
13秒前
cucu发布了新的文献求助10
14秒前
14秒前
14秒前
css1997发布了新的文献求助10
14秒前
彤光赫显发布了新的文献求助10
15秒前
机灵雁风完成签到,获得积分10
16秒前
清秀不言完成签到 ,获得积分10
16秒前
醉熏的幻灵完成签到 ,获得积分10
17秒前
leaolf应助烤乳猪采纳,获得10
17秒前
18秒前
19秒前
完美世界应助阳光芷蝶采纳,获得10
20秒前
包容的语薇完成签到,获得积分10
21秒前
爆米花应助侯mm采纳,获得10
22秒前
脑洞疼应助韦尔蓝采纳,获得20
22秒前
斯文败类应助huihui采纳,获得10
23秒前
CCC完成签到 ,获得积分10
23秒前
26秒前
超帅的小熊猫完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578224
求助须知:如何正确求助?哪些是违规求助? 3997171
关于积分的说明 12374791
捐赠科研通 3671317
什么是DOI,文献DOI怎么找? 2023340
邀请新用户注册赠送积分活动 1057301
科研通“疑难数据库(出版商)”最低求助积分说明 944261