iFLAS: positive‐unlabeled learning facilitates full‐length transcriptome‐based identification and functional exploration of alternatively spliced isoforms in maize

转录组 基因亚型 鉴定(生物学) 计算生物学 生物 选择性拼接 化学 生物化学 细胞生物学 基因 植物 基因表达
作者
Xu Feng,Songyu Liu,Aiguo Zhao,Meiqi Shang,Qian Wang,Shuqin Jiang,Quan Cheng,Xingming Chen,Xiaoguang Zhai,Jianan Zhang,Xiangfeng Wang,Jun Yan
出处
期刊:New Phytologist [Wiley]
标识
DOI:10.1111/nph.19554
摘要

Summary The advent of full‐length transcriptome sequencing technologies has accelerated the discovery of novel splicing isoforms. However, existing alternative splicing (AS) tools are either tailored for short‐read RNA‐Seq data or designed for human and animal studies. The disparities in AS patterns between plants and animals still pose a challenge to the reliable identification and functional exploration of novel isoforms in plants. Here, we developed integrated full‐length alternative splicing analysis (iFLAS), a plant‐optimized AS toolkit that introduced a semi‐supervised machine learning method known as positive‐unlabeled (PU) learning to accurately identify novel isoforms. iFLAS also enables the investigation of AS functions from various perspectives, such as differential AS, poly(A) tail length, and allele‐specific AS (ASAS) analyses. By applying iFLAS to three full‐length transcriptome sequencing datasets, we systematically identified and functionally characterized maize ( Zea mays ) AS patterns. We found intron retention not only introduces premature termination codons, resulting in lower expression levels of isoforms, but may also regulate the length of 3′UTR and poly(A) tail, thereby affecting the functional differentiation of isoforms. Moreover, we observed distinct ASAS patterns in two genes within heterosis offspring, highlighting their potential value in breeding. These results underscore the broad applicability of iFLAS in plant full‐length transcriptome‐based AS research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速幻竹关注了科研通微信公众号
1秒前
白昼流星完成签到 ,获得积分10
2秒前
我想快点毕业啊完成签到,获得积分10
3秒前
不要酸橘子完成签到,获得积分10
3秒前
开朗万天完成签到 ,获得积分10
3秒前
vv完成签到 ,获得积分10
3秒前
4秒前
6秒前
qaz发布了新的文献求助10
6秒前
安静无招完成签到 ,获得积分10
7秒前
Singularity应助称心翠容采纳,获得20
8秒前
刘彤完成签到,获得积分10
8秒前
9秒前
gy发布了新的文献求助10
10秒前
11秒前
14秒前
boom发布了新的文献求助10
15秒前
15秒前
16秒前
hxy919693123发布了新的文献求助10
18秒前
GealAntS完成签到,获得积分10
18秒前
18秒前
18秒前
21秒前
天天快乐应助酥酥采纳,获得10
23秒前
24秒前
25秒前
黄迪迪完成签到 ,获得积分10
25秒前
顾矜应助阿远采纳,获得20
26秒前
桐桐应助JLLi采纳,获得10
27秒前
Jaylou完成签到,获得积分10
28秒前
姝宝发布了新的文献求助10
28秒前
orixero应助高贵的洋葱采纳,获得10
30秒前
32秒前
blusky发布了新的文献求助10
32秒前
32秒前
大侦探皮卡丘完成签到,获得积分10
33秒前
充电宝应助牛牛采纳,获得10
35秒前
小蘑菇应助农大彭于晏采纳,获得10
36秒前
qaz完成签到,获得积分20
36秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Pressing the Fight: Print, Propaganda, and the Cold War 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471172
求助须知:如何正确求助?哪些是违规求助? 2137937
关于积分的说明 5447668
捐赠科研通 1861809
什么是DOI,文献DOI怎么找? 925947
版权声明 562740
科研通“疑难数据库(出版商)”最低求助积分说明 495278