序数回归
有序优化
序数数据
一般化
计算机科学
人工智能
分层数据库模型
约束(计算机辅助设计)
二进制数
顺序量表
集合(抽象数据类型)
机器学习
理论计算机科学
数学
数据挖掘
统计
数学分析
几何学
算术
程序设计语言
作者
Riccardo Rosati,Luca Romeo,Víctor Manuel Vargas,Pedro Antonio Gutiérrez,Emanuele Frontoni,César Hervás‐Martínez
标识
DOI:10.1109/tnnls.2024.3360641
摘要
Real-world classification problems may disclose different hierarchical levels where the categories are displayed in an ordinal structure. However, no specific deep learning (DL) models simultaneously learn hierarchical and ordinal constraints while improving generalization performance. To fill this gap, we propose the introduction of two novel ordinal–hierarchical DL methodologies, namely, the hierarchical cumulative link model (HCLM) and hierarchical–ordinal binary decomposition (HOBD), which are able to model the ordinal structure within different hierarchical levels of the labels. In particular, we decompose the hierarchical–ordinal problem into local and global graph paths that may encode an ordinal constraint for each hierarchical level. Thus, we frame this problem as simultaneously minimizing global and local losses. Furthermore, the ordinal constraints are set by two approaches ordinal binary decomposition (OBD) and cumulative link model (CLM) within each global and local function. The effectiveness of the proposed approach is measured on four real-use case datasets concerning industrial, biomedical, computer vision, and financial domains. The extracted results demonstrate a statistically significant improvement to state-of-the-art nominal, ordinal, and hierarchical approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI