Predicting hematoma expansion in acute spontaneous intracerebral hemorrhage: integrating clinical factors with a multitask deep learning model for non-contrast head CT

医学 神经组阅片室 神经学 逻辑回归 脑出血 血肿 放射科 机器学习 外科 内科学 格拉斯哥昏迷指数 人工智能 计算机科学 精神科
作者
Hyochul Lee,Junhyeok Lee,Joon Hwan Jang,Inpyeong Hwang,Kyu Sung Choi,Jung Hyun Park,Jin Wook Chung,Seung Hong Choi
出处
期刊:Neuroradiology [Springer Science+Business Media]
卷期号:66 (4): 577-587 被引量:14
标识
DOI:10.1007/s00234-024-03298-y
摘要

Abstract Purpose To predict hematoma growth in intracerebral hemorrhage patients by combining clinical findings with non-contrast CT imaging features analyzed through deep learning. Methods Three models were developed to predict hematoma expansion (HE) in 572 patients. We utilized multi-task learning for both hematoma segmentation and prediction of expansion: the Image-to-HE model processed hematoma slices, extracting features and computing a normalized DL score for HE prediction. The Clinical-to-HE model utilized multivariate logistic regression on clinical variables. The Integrated-to-HE model combined image-derived and clinical data. Significant clinical variables were selected using forward selection in logistic regression. The two models incorporating clinical variables were statistically validated. Results For hematoma detection, the diagnostic performance of the developed multi-task model was excellent (AUC, 0.99). For expansion prediction, three models were evaluated for predicting HE. The Image-to-HE model achieved an accuracy of 67.3%, sensitivity of 81.0%, specificity of 64.0%, and an AUC of 0.76. The Clinical-to-HE model registered an accuracy of 74.8%, sensitivity of 81.0%, specificity of 73.3%, and an AUC of 0.81. The Integrated-to-HE model, merging both image and clinical data, excelled with an accuracy of 81.3%, sensitivity of 76.2%, specificity of 82.6%, and an AUC of 0.83. The Integrated-to-HE model, aligning closest to the diagonal line and indicating the highest level of calibration, showcases superior performance in predicting HE outcomes among the three models. Conclusion The integration of clinical findings with non-contrast CT imaging features analyzed through deep learning showed the potential for improving the prediction of HE in acute spontaneous intracerebral hemorrhage patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll完成签到,获得积分10
2秒前
繁多星发布了新的文献求助10
3秒前
6秒前
Dr大壮发布了新的文献求助10
11秒前
自然的霸发布了新的文献求助10
13秒前
17秒前
17秒前
20秒前
zhu发布了新的文献求助10
21秒前
刘佳发布了新的文献求助10
22秒前
Cee完成签到,获得积分10
23秒前
墨兮完成签到,获得积分10
24秒前
科研通AI5应助Alger采纳,获得10
25秒前
29秒前
31秒前
32秒前
33秒前
简单洋发布了新的文献求助20
35秒前
36秒前
伊伊发布了新的文献求助10
37秒前
Sun发布了新的文献求助30
37秒前
38秒前
唐泽雪穗应助科研通管家采纳,获得10
39秒前
moriaty应助科研通管家采纳,获得10
39秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
大模型应助科研通管家采纳,获得10
40秒前
40秒前
orixero应助科研通管家采纳,获得10
40秒前
唐泽雪穗应助科研通管家采纳,获得10
40秒前
41秒前
41秒前
伊伊发布了新的文献求助10
42秒前
共享精神应助自然的霸采纳,获得10
45秒前
冷傲山彤发布了新的文献求助10
45秒前
46秒前
46秒前
倪塔宝贝发布了新的文献求助10
47秒前
小曹努力发布了新的文献求助10
47秒前
十三完成签到,获得积分10
47秒前
Alger发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784598
求助须知:如何正确求助?哪些是违规求助? 4111817
关于积分的说明 12720816
捐赠科研通 3836514
什么是DOI,文献DOI怎么找? 2115376
邀请新用户注册赠送积分活动 1138374
关于科研通互助平台的介绍 1024374