High throughput CD-SEM metrology using image denoising based on deep learning

吞吐量 计量学 图像去噪 计算机科学 降噪 人工智能 深度学习 图像(数学) 计算机视觉 机器学习 统计 数学 电信 无线
作者
Tomoyuki Okuda,Toshinori Yamauchi,Shuhao Kang,Y.O. Park,Kiwoong Lee,I.H. Lee,Hyewon Park,Gang-Min Lim,Yongtae Jun,Yongtae Jun,Gee Won Shin
标识
DOI:10.1117/12.3006709
摘要

Accompanying the microfabrication and the complexity of the semiconductor manufacturing process, measurement and inspection using a scanning electron microscope (SEM) have become increasingly important for semiconductor manufacturing. Therefore, we have introduced an image denoising algorithm based on supervised deep learning with measurements for model training that transform a low signal-to-noise ratio (S/N) SEM image into a high S/N one, thereby improving the measurement success rate and maintaining measurement precision. Our experimental results demonstrated its effectiveness by an algorithm for enhancing throughput. However, performance may degrade when dealing with images containing features not included in the training dataset because deep learning models generally rely on trained features. Therefore, we propose high throughput CD-SEM metrology using image denoising based on deep learning that include a technique to statistically monitor deviations from the training images during model operation. In this study, we mainly discuss about monitoring module. To verify effectiveness of our proposed monitoring module, we first acquired sets of normal images used for training a deep learning model and sets of deviated images in which the SEM imaging recipe was partially changed. Then, the distribution of statistical values for noise and brightness features in the normal image set was used as a reference to compare the deviated image sets by the proposed method. As a result, the detection rate of the deviated images achieves 100%, and the false detection rate achieve 0% by combining of multiple statistical value distributions. By detecting deviated images that may degrade measurement performance, it is possible to maintain measurement precision and operate high-throughput measurement by using a denoising model based on deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
格格发布了新的文献求助20
3秒前
栗子完成签到,获得积分10
4秒前
suda完成签到 ,获得积分10
9秒前
sisi完成签到,获得积分20
10秒前
Jasper应助cwz采纳,获得10
10秒前
fafafa完成签到,获得积分10
12秒前
15秒前
善学以致用应助晚风采纳,获得10
16秒前
zzz2193发布了新的文献求助10
16秒前
JamesPei应助liurui采纳,获得10
16秒前
热心市民小红花应助yuyuan采纳,获得10
17秒前
冷漠阿沈完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
19秒前
超帅冷雪发布了新的文献求助10
19秒前
乱输就行张大帅说的完成签到,获得积分20
20秒前
左丘绝山发布了新的文献求助10
22秒前
23秒前
DE2022发布了新的文献求助10
25秒前
冰魂应助科研通管家采纳,获得20
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得30
26秒前
26秒前
冰魂应助科研通管家采纳,获得10
26秒前
有人应助科研通管家采纳,获得60
26秒前
冰魂应助科研通管家采纳,获得30
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
冰魂应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
冰魂应助科研通管家采纳,获得30
26秒前
26秒前
丘比特应助1vvZ采纳,获得10
28秒前
29秒前
joy完成签到 ,获得积分10
29秒前
YeSun发布了新的文献求助10
30秒前
31秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883369
求助须知:如何正确求助?哪些是违规求助? 3425812
关于积分的说明 10746061
捐赠科研通 3150752
什么是DOI,文献DOI怎么找? 1738839
邀请新用户注册赠送积分活动 839509
科研通“疑难数据库(出版商)”最低求助积分说明 784585