A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS)

计算机科学 强化学习 机器学习 人工智能 马尔可夫决策过程 决策支持系统 最优决策 决策树 马尔可夫过程 数学 统计
作者
Dipesh Niraula,Wenbo Sun,Jesse S. Jin,Ivo D. Dinov,Kyle C. Cuneo,Jamalina Jamaluddin,Martha M. Matuszak,Yi Luo,Theodore S. Lawrence,Shruti Jolly,R.K. Ten Haken,Issam El Naqa
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:7
标识
DOI:10.1038/s41598-023-32032-6
摘要

Involvement of many variables, uncertainty in treatment response, and inter-patient heterogeneity challenge objective decision-making in dynamic treatment regime (DTR) in oncology. Advanced machine learning analytics in conjunction with information-rich dense multi-omics data have the ability to overcome such challenges. We have developed a comprehensive artificial intelligence (AI)-based optimal decision-making framework for assisting oncologists in DTR. In this work, we demonstrate the proposed framework to Knowledge Based Response-Adaptive Radiotherapy (KBR-ART) applications by developing an interactive software tool entitled Adaptive Radiotherapy Clinical Decision Support (ARCliDS). ARCliDS is composed of two main components: Artifcial RT Environment (ARTE) and Optimal Decision Maker (ODM). ARTE is designed as a Markov decision process and modeled via supervised learning. Given a patient's pre- and during-treatment information, ARTE can estimate treatment outcomes for a selected daily dosage value (radiation fraction size). ODM is formulated using reinforcement learning and is trained on ARTE. ODM can recommend optimal daily dosage adjustments to maximize the tumor local control probability and minimize the side effects. Graph Neural Networks (GNN) are applied to exploit the inter-feature relationships for improved modeling performance and a novel double GNN architecture is designed to avoid nonphysical treatment response. Datasets of size 117 and 292 were available from two clinical trials on adaptive RT in non-small cell lung cancer (NSCLC) patients and adaptive stereotactic body RT (SBRT) in hepatocellular carcinoma (HCC) patients, respectively. For training and validation, dense data with 297 features were available for 67 NSCLC patients and 110 features for 71 HCC patients. To increase the sample size for ODM training, we applied Generative Adversarial Networks to generate 10,000 synthetic patients. The ODM was trained on the synthetic patients and validated on the original dataset. We found that, Double GNN architecture was able to correct the nonphysical dose-response trend and improve ARCliDS recommendation. The average root mean squared difference (RMSD) between ARCliDS recommendation and reported clinical decisions using double GNNs were 0.61 [0.03] Gy/frac (mean [sem]) for adaptive RT in NSCLC patients and 2.96 [0.42] Gy/frac for adaptive SBRT HCC compared to the single GNN's RMSDs of 0.97 [0.12] Gy/frac and 4.75 [0.16] Gy/frac, respectively. Overall, For NSCLC and HCC, ARCliDS with double GNNs was able to reproduce 36% and 50% of the good clinical decisions (local control and no side effects) and improve 74% and 30% of the bad clinical decisions, respectively. In conclusion, ARCliDS is the first web-based software dedicated to assist KBR-ART with multi-omics data. ARCliDS can learn from the reported clinical decisions and facilitate AI-assisted clinical decision-making for improving the outcomes in DTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qumy应助金熙美采纳,获得10
2秒前
3秒前
4秒前
高高烙完成签到,获得积分10
6秒前
FashionBoy应助123采纳,获得10
6秒前
7秒前
8秒前
烟花应助CYY采纳,获得10
9秒前
小高同学发布了新的文献求助10
10秒前
11秒前
李天完成签到,获得积分10
12秒前
12秒前
兴奋的万声完成签到,获得积分10
13秒前
可耐的梦琪完成签到,获得积分10
26秒前
果粒橙完成签到 ,获得积分10
27秒前
亦雪发布了新的文献求助20
29秒前
n3pu030036应助小周碎碎念采纳,获得10
30秒前
32秒前
32秒前
彭于晏应助小高同学采纳,获得10
32秒前
充电宝应助科研通管家采纳,获得10
33秒前
科目三应助科研通管家采纳,获得10
33秒前
搜集达人应助liiiii采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
33秒前
李爱国应助科研通管家采纳,获得10
33秒前
Xenia应助科研通管家采纳,获得10
33秒前
SciGPT应助科研通管家采纳,获得10
33秒前
汉堡包应助科研通管家采纳,获得10
33秒前
深情安青应助科研通管家采纳,获得30
33秒前
34秒前
小虫学长应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
34秒前
Ava应助科研通管家采纳,获得10
34秒前
赘婿应助科研通管家采纳,获得10
34秒前
34秒前
pluto应助科研通管家采纳,获得10
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385