亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physician- and Large Language Model–Generated Hospital Discharge Summaries

医学 叙述的 利克特量表 比例(比率) 家庭医学 医疗保健 文档 统计 经济增长 程序设计语言 经济 计算机科学 量子力学 数学 物理 语言学 哲学
作者
Christopher Y. K. Williams,Charumathi Raghu Subramanian,Syed Salman Ali,Michael Apolinario,Elisabeth Askin,Peter Barish,Monica Cheng,William James Deardorff,Nisha Donthi,Smitha Ganeshan,Owen Huang,Molly A. Kantor,Andrew Lai,Ashley Manchanda,Kendra A. Moore,Anoop Muniyappa,Geethu Nair,Prashant Patel,Lekshmi Santhosh,Susan Schneider
出处
期刊:JAMA Internal Medicine [American Medical Association]
标识
DOI:10.1001/jamainternmed.2025.0821
摘要

Importance High-quality discharge summaries are associated with improved patient outcomes, but contribute to clinical documentation burden. Large language models (LLMs) provide an opportunity to support physicians by drafting discharge summary narratives. Objective To determine whether LLM-generated discharge summary narratives are of comparable quality and safety to those of physicians. Design, Setting, and Participants This cross-sectional study conducted at the University of California, San Francisco included 100 randomly selected inpatient hospital medicine encounters of 3 to 6 days’ duration between 2019 and 2022. The analysis took place in July 2024. Exposure A blinded evaluation of physician- and LLM-generated narratives was performed in duplicate by 22 attending physician reviewers. Main Outcomes and Measures Narratives were reviewed for overall quality, reviewer preference, comprehensiveness, concision, coherence, and 3 error types (inaccuracies, omissions, and hallucinations). Each error individually, and each narrative overall, were assigned potential harmfulness scores ranging from 0 to 7 on an adapted Agency for Healthcare Research and Quality scale. Results Across 100 encounters, LLM- and physician-generated narratives were comparable in overall quality on a Likert scale ranging from 1 to 5 (higher scores indicate higher quality; mean [SD] score, 3.67 [0.49] vs 3.77 [0.57]; P = .21) and reviewer preference (χ 2 = 5.2; P = .27). LLM-generated narratives were more concise (mean [SD] score, 4.01 [0.37] vs 3.70 [0.59]; P < .001) and more coherent (mean [SD] score, 4.16 [0.39] vs 4.01 [0.53]; P = .02) than their physician-generated counterparts, but less comprehensive (mean [SD] score, 3.72 [0.58] vs 4.13 [0.58]; P < .001). LLM-generated narratives contained more unique errors (mean [SD] errors per summary, 2.91 [2.54]) than physician-generated narratives (mean [SD] errors per summary, 1.82 [1.94]). There was no significant difference in the potential for harm between LLM- and physician-generated narratives across individual errors (mean [SD] of 1.35 [1.07] vs 1.34 [1.05]; P = .99), with 6 and 5 individual errors, respectively, with scores of 4 (potential for permanent harm) or greater. Both LLM- and physician-generated narratives had low overall potential for harm (scores <1 on a scale ranging from 0-7), with LLM-generated narratives scoring higher than physician narratives (mean [SD] score of 0.84 [0.98] vs 0.36 [0.70]; P < .001) and only 1 LLM-generated narrative (compared with 0 physician-generated narratives) scoring 4 or greater. Conclusions and Relevance In this cross-sectional study of 100 inpatient hospital medicine encounters, LLM-generated discharge summary narratives were of comparable quality, and were preferred equally, to those generated by physicians. LLM-generated narratives were more likely to contain errors but had low overall harmfulness scores. These results suggest that, in clinical practice, using such narratives after human review may provide a viable option for hospitalists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
megaX完成签到,获得积分10
3秒前
柠檬精翠翠完成签到 ,获得积分10
49秒前
1分钟前
wayne完成签到 ,获得积分10
1分钟前
酷波er应助AAA电材哥采纳,获得10
1分钟前
1分钟前
AAA电材哥发布了新的文献求助10
1分钟前
001完成签到,获得积分10
2分钟前
megaX发布了新的文献求助10
2分钟前
002完成签到,获得积分10
3分钟前
Dou完成签到,获得积分10
3分钟前
Hkwimin应助d00007采纳,获得10
3分钟前
沿途有你完成签到 ,获得积分10
4分钟前
4分钟前
rodrisk完成签到 ,获得积分10
5分钟前
5分钟前
ZYP驳回了Hkwimin应助
5分钟前
003完成签到,获得积分10
5分钟前
笨笨山芙完成签到 ,获得积分10
6分钟前
小二郎应助00000采纳,获得10
6分钟前
火星上小土豆完成签到 ,获得积分10
6分钟前
ZYP完成签到,获得积分10
7分钟前
7分钟前
00000发布了新的文献求助10
7分钟前
7分钟前
开胃咖喱完成签到,获得积分10
7分钟前
开胃咖喱发布了新的文献求助10
7分钟前
多亿点完成签到 ,获得积分10
7分钟前
Orange应助00000采纳,获得10
7分钟前
8分钟前
fhw完成签到 ,获得积分10
8分钟前
今后应助科研通管家采纳,获得10
8分钟前
鬼见愁应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
鬼见愁应助科研通管家采纳,获得10
8分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
所所应助十三采纳,获得10
9分钟前
9分钟前
十三发布了新的文献求助10
9分钟前
加贝完成签到 ,获得积分10
9分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4149625
求助须知:如何正确求助?哪些是违规求助? 3685786
关于积分的说明 11643433
捐赠科研通 3378992
什么是DOI,文献DOI怎么找? 1854397
邀请新用户注册赠送积分活动 916630
科研通“疑难数据库(出版商)”最低求助积分说明 830495