石墨烯
材料科学
制作
纳米技术
激光器
复合材料
光学
医学
替代医学
物理
病理
作者
Yue Zhao,Yonghui Zhang,Yang Chen,Haodong Fu,Huan Liu,Jinlong Song,Xin Liu
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2025-04-21
卷期号:18 (8): 1880-1880
摘要
Conventional LIG preparation mostly relies on the ablation process of a CO2 laser on a polyimide (PI) substrate but is limited by the sensitivity of the laser parameters, which is prone to PI film deformation, non-uniformity of the process, or LIG surface breakage problems. In this study, we present a new method to fabricate superhydrophobic laser-induced graphene (SH-LIG) surfaces by immobilizing the polyimide (PI) film on the copper sheet, which enables uniform laser processing (single pass laser etching) over a wider range of microsecond laser parameters (10.5–19.5 W). Subsequently, the SH-LIG was obtained by vacuum-assisted immersion in stearic acid, resulting in a water contact angle greater than 150°, roll angle stabilized at 6°, and hydrophobic stability at a high temperature of 90 °C. Analysis by Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) showed that the LIG fabricated at optimal power (19.5 W) had a more developed C sp2 network (I2D/IG ≈ 0.5) and pore structure, which significantly improved the photothermal conversion efficiency (up to 252 °C in air and 180 °C on water). On this basis, a simple micro-driver based on SH-LIG was designed. Experiments showed that the maximum velocity of the SH-LIG boat can reach an adjustable propulsion velocity of 45.6 mm/s (related to the laser processing power and the intensity of the driving light), which is 132% higher than that of the LIG boat. This work provides insights into the preparation of high-quality LIG and their application in photothermally driven micro actuators, highlighting the synergies between structural optimization, surface engineering, and photothermal performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI