SpineRegNet: Spine Registration Network for volumetric MR and CT image by the joint estimation of an affine-elastic deformation field

仿射变换 人工智能 图像配准 计算机科学 椎骨 计算机视觉 刚性变换 刚度(电磁) 数学 医学 图像(数学) 解剖 几何学 物理 量子力学
作者
Lei Zhao,Shumao Pang,Yangfan Chen,Xiongfeng Zhu,Ziyue Jiang,Zhihai Su,Hai Lü,Yujia Zhou,Qianjin Feng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102786-102786 被引量:18
标识
DOI:10.1016/j.media.2023.102786
摘要

Spine registration for volumetric magnetic resonance (MR) and computed tomography (CT) images plays a significant role in surgical planning and surgical navigation system for the radiofrequency ablation of spine intervertebral discs. The affine transformation of each vertebra and elastic deformation of the intervertebral disc exist at the same time. This situation is a major challenge in spine registration. Existing spinal image registration methods failed to solve the optimal affine-elastic deformation field (AEDF) simultaneously, only consider the overall rigid or elastic alignment with the help of a manual spine mask, and encounter difficulty in meeting the accuracy requirements of clinical registration application. In this study, we propose a novel affine-elastic registration framework named SpineRegNet. The SpineRegNet consists of a Multiple Affine Matrices Estimation (MAME) Module for multiple vertebrae alignment, an Affine-Elastic Fusion (AEF) Module for joint estimation of the overall AEDF, and a Local Rigidity Constraint (LRC) Module for preserving the rigidity of each vertebra. Experiments on T2-weighted volumetric MR and CT images show that the proposed approach achieves impressive performance with mean Dice similarity coefficients of 91.36%, 81.60%, and 83.08% for the mask of the vertebrae on Datasets A-C, respectively. The proposed technique does not require a mask or manual participation during the tests and provides a useful tool for clinical spinal disease surgical planning and surgical navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳雨发布了新的文献求助10
1秒前
2秒前
飞阳完成签到,获得积分10
2秒前
2秒前
lowry发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI5应助lucyliu采纳,获得10
4秒前
4秒前
张张张完成签到 ,获得积分10
5秒前
畅快的刚完成签到,获得积分10
6秒前
汉堡包应助猴子大王666采纳,获得10
7秒前
TT完成签到,获得积分10
8秒前
天道酬勤完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
quxiaofei发布了新的文献求助10
10秒前
10秒前
11秒前
zyl完成签到,获得积分10
11秒前
大壳完成签到,获得积分10
11秒前
苏西完成签到,获得积分10
12秒前
爆米花应助ttt采纳,获得10
12秒前
0099发布了新的文献求助10
12秒前
科研通AI2S应助hello采纳,获得10
13秒前
李健应助111采纳,获得10
13秒前
丘比特应助太阳雨采纳,获得10
13秒前
15秒前
大壳发布了新的文献求助10
15秒前
123发布了新的文献求助20
16秒前
明理的若灵完成签到,获得积分10
16秒前
NexusExplorer应助孤独的蚂蚁采纳,获得10
16秒前
jimmysea完成签到,获得积分20
17秒前
jinshijie完成签到 ,获得积分10
17秒前
张仁斌发布了新的文献求助10
17秒前
深情安青应助友好的半仙采纳,获得10
18秒前
19秒前
五棵松恶霸完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806811
求助须知:如何正确求助?哪些是违规求助? 3351524
关于积分的说明 10354611
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684489
邀请新用户注册赠送积分活动 809716
科研通“疑难数据库(出版商)”最低求助积分说明 765635