Ultrasensitive Strain Sensor Based on a Tunnel Junction with an AlN/GaN Core-Shell Nanowire

量子隧道 纳米线 晶体管 材料科学 凝聚态物理 物理 光电子学 纳米技术 电压 量子力学
作者
Gongwei Hu,Fobao Huang,Jun-Feng Liu
出处
期刊:Physical review applied [American Physical Society]
卷期号:19 (1) 被引量:3
标识
DOI:10.1103/physrevapplied.19.014066
摘要

Piezotronic transistor operating in the quantum tunneling regime has recently roused wide interest for developing ultrasensitive strain sensing with applications in wearable electronics and human-machine interfaces. However, the lack of a strict theoretical demonstration from a quantum perspective renders the development of such an emerging area particularly slow due to their complex fabrication process and vulnerable experimental interference. Here, by combining third-dimensional self-consistent calculation with a nonequilibrium Green's function framework, we study the intrinsic device properties of piezotronic tunneling transistor (PTT) based on $\mathrm{Al}\mathrm{N}/\mathrm{Ga}\mathrm{N}$ core-shell nanowire. The results show that strain-induced piezoelectric polarization can remarkably tune tunneling barrier height and width, both of which are increased by tensile strain and decreased by compressive strain. At a moderate strain amplitude of 1.0% and bias of 2.0 V, the strain-induced change in effective barrier height and width can reach as high as 0.5 eV and 4.0 nm, respectively. This remarkable tunability in the barrier allows for an ultrahigh on/off current ratio ${10}^{17}$, and giant gauge factor 1.2 \ifmmode\times\else\texttimes\fi{} ${10}^{8}$ in current and 1.1 \ifmmode\times\else\texttimes\fi{} ${10}^{13}$ in resistance. The performance can be further optimized by properly tailoring device architectures, including insulator thickness, nanowire length, or core-shell size. Our demonstration of the PTT with combined quantum tunneling and piezotronic effect opens a window for designing highly sensitive, large on/off ratio and low-power strain sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qi发布了新的文献求助10
1秒前
淡淡乐安发布了新的文献求助30
1秒前
wannn完成签到 ,获得积分10
2秒前
茜茜完成签到 ,获得积分10
3秒前
3秒前
3秒前
Nn发布了新的文献求助10
4秒前
科研通AI2S应助Jimmy_King采纳,获得10
5秒前
5秒前
zzz发布了新的文献求助10
5秒前
8秒前
周老八发布了新的文献求助10
8秒前
12秒前
17秒前
18秒前
19秒前
19秒前
科研小糊涂完成签到,获得积分10
20秒前
20秒前
带象完成签到,获得积分10
21秒前
21秒前
苏苏完成签到,获得积分10
21秒前
碧蓝的海瑶完成签到,获得积分20
22秒前
23秒前
SWEETYXY发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
Xu_W卜完成签到,获得积分10
27秒前
27秒前
Lucas应助梁三岁采纳,获得10
28秒前
flyzhang20发布了新的文献求助10
28秒前
淡淡乐安完成签到,获得积分20
28秒前
研友_LJGpan发布了新的文献求助10
29秒前
30秒前
30秒前
JYM发布了新的文献求助10
30秒前
31秒前
项烙完成签到,获得积分10
32秒前
周老八发布了新的文献求助10
33秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843913
求助须知:如何正确求助?哪些是违规求助? 3386217
关于积分的说明 10544489
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774434