清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Wild Mammal Behavior Recognition Based on Gated Transformer Network

计算机科学 人工智能 哺乳动物 模式识别(心理学) 变压器 计算机视觉 工程类 生物 生态学 电气工程 电压
作者
Shichao Deng,Guizhong Tang,Lei Mei
标识
DOI:10.1109/iccsi55536.2022.9970674
摘要

Automatically recognizing animal behaviors in zoos and in national natural reserves can provide valuable insight into their welfare for facilitating scientific decision-making processes in animal management. This paper proposes a wild mammal behavior recognition model based on Gated Transformer Network. The model can respectively capture temporal and spatial information by two parallel Transformers, the channel-wise Transformer and the step-wise Trans-former. Thus, the hidden correlation between different channels of multivariate time series of wild mammal behavior classification can be exploited, meanwhile, the self-attention mechanism in the proposed network is used to model dependencies in sequences. we detect the animal contours in images as spatial features. The skeleton-based animal action recognition model is used to extract the joint coordinates during consecutive frames, then the fluctuate of the joint coordinates is used to distinguish the diversity of different behaviors of wild mammal in temporal space, which help to characterize the difference of joint point movement speed of different behaviors. In addition, we also compute leg joint angle for distinguishing the behaviors galloping and standing. Finally, the temporal features and spatial features are fused into the Gated Transformer Network for action recognition of wild mammal. The experiments show that the proposed model can effectively recognize four representational behaviors of animals: galloping, sitting, ambling, and standing. The average accuracy of the proposed scheme for recognizing behavior of wild mammal achieve 96.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
共享精神应助punch采纳,获得10
28秒前
秦明完成签到 ,获得积分10
36秒前
38秒前
47秒前
1分钟前
炳灿完成签到 ,获得积分10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
1323834289发布了新的文献求助10
2分钟前
2分钟前
脑洞疼应助1323834289采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
华仔应助北冥鱼采纳,获得10
3分钟前
3分钟前
herpes完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
北冥鱼发布了新的文献求助10
4分钟前
风中可仁完成签到 ,获得积分10
4分钟前
xue完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
王迎迎完成签到,获得积分10
4分钟前
5分钟前
冷傲半邪完成签到,获得积分10
5分钟前
常有李完成签到,获得积分10
5分钟前
笔墨纸砚完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
5分钟前
1323834289发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488684
求助须知:如何正确求助?哪些是违规求助? 4587414
关于积分的说明 14413910
捐赠科研通 4518899
什么是DOI,文献DOI怎么找? 2476110
邀请新用户注册赠送积分活动 1461563
关于科研通互助平台的介绍 1434634