荧光粉
发光
材料科学
能量转移
兴奋剂
离子
发射强度
分析化学(期刊)
光电子学
光致发光
荧光
光学
化学
物理
有机化学
色谱法
分子物理学
作者
Jiaming Deng,Zihao Wang,Weiping Zhou,Mingyuan Yu,Jiangen Min,Xunliang Jiang,Ziyan Xue,Chun-Lin Ma,Zhenzhi Cheng,Guangsheng Luo
标识
DOI:10.1016/j.ceramint.2023.01.036
摘要
Luminescent temperature sensors based on photoluminescent materials have received considerable attention for their advantages of quick and noninvasive measurement. In this paper, a series of Tb3+, Eu3+ single-doped and co-doped Ca2Al2SiO7 (CAS) phosphors were synthesized by sol-gel method. The phase purity, surface morphology, energy transfer, luminescence characteristics and temperature sensing properties of Tb3+, Eu3+ doped CAS phosphors have been studied carefully. Due to the energy transfer of Tb3+→Eu3+, CAS: Tb3+, Eu3+ phosphors demonstrate tunable luminescence under 238 nm excitation, in which the luminescence color gradually changes from purple-red to cool white, and then to warm white by continuously increasing the concentration of Tb3+ ions. The elongation of the fluorescence lifetime of Eu3+ with increasing Tb3+ ions content further confirms the energy transfer of Tb3+→Eu3+. The thermal behavior of CAS: Tb3+, Eu3+ phosphors shows enhanced luminescence intensity for 404 nm emission while suppressed luminescence intensity for 616 nm emissions with raising temperature, implying its potential in optical temperature sensing. Therefore, the temperature sensing performance is evaluated by using the fluorescence intensity ratio (I404 nm /I616 nm) in CAS: Tb3+, Eu3+ phosphors, showing a maximum relative sensitivity of 1.17%K−1 at 443 K. These results indicate that CAS: Tb3+, Eu3+ phosphors are promising candidates for tunable luminescence and non-contact temperature sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI