已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-Throughput Exploration of Ti–V–Nb–Mo Carbide MXenes Using Neural Network Potentials and Their Evaluation as Catalysts for Hydrogen Evolution Reaction

MXenes公司 催化作用 材料科学 密度泛函理论 碳化物 过渡金属 分解水 分子动力学 化学物理 纳米技术 计算化学 化学 有机化学 生物化学 光催化 复合材料
作者
Mohammed Wasay Mudassir,Sriram Goverapet Srinivasan,Mahesh Mynam,Beena Rai
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (1): 1127-1138 被引量:1
标识
DOI:10.1021/acsami.4c16965
摘要

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (Mn+1Xn) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure. Recently, high entropy MXenes were synthesized, opening a vast compositional space of potentially stable and functionally superior materials. Detailed atomistic modeling enables us to systematically explore this extensive design space, which is otherwise infeasible in experiments. We have developed a Neural Network Potential (NNP) to model (TixVyNbzMop)n+1Cn MXenes (x+y+z+p = 1; n = 1,2,3) by training against Density Functional Theory (DFT) data in an active learning fashion. We then used the developed NNP to perform hybrid Monte Carlo-Molecular Dynamics (MC-MD) simulations to identify thermodynamically stable compositions and investigate the relative arrangement of transition metal atoms within and across layers. Thermodynamic stability increased with Mo content and its presence on the surface layer. We further investigated the catalytic performance of stable MXenes for the HER and observed that the center of the oxygen p-band (εp) correlated well with the energy of adsorption of a hydrogen atom ΔG(*H). Subsurface metal atoms significantly influenced the ΔG(*H) values at the surface via both ligand and strain effects. Our work expands the space of potentially stable MXene compositions, providing targets for synthesis and their evaluation in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyl完成签到,获得积分10
刚刚
1秒前
jawa完成签到 ,获得积分10
4秒前
boshi发布了新的文献求助10
4秒前
武雨寒发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
lizhiqian2024发布了新的文献求助10
8秒前
HJJHJH发布了新的文献求助10
8秒前
liuwenjie发布了新的文献求助10
11秒前
jerry完成签到,获得积分10
13秒前
14秒前
msuyue完成签到,获得积分10
14秒前
万能图书馆应助自由悟空采纳,获得10
15秒前
是迟迟呀完成签到 ,获得积分10
18秒前
哈密哈密完成签到,获得积分10
19秒前
20秒前
想吃糖葫芦完成签到 ,获得积分10
23秒前
29秒前
大意的晓亦完成签到 ,获得积分10
30秒前
NCNST-shi完成签到,获得积分10
31秒前
英俊的铭应助sum采纳,获得10
32秒前
bkagyin应助不喜采纳,获得10
34秒前
一二完成签到,获得积分10
35秒前
35秒前
36秒前
萝卜发布了新的文献求助10
41秒前
科研通AI5应助九宝采纳,获得10
41秒前
41秒前
jenningseastera应助lizhiqian2024采纳,获得10
45秒前
46秒前
47秒前
2568269431发布了新的文献求助10
47秒前
sum发布了新的文献求助10
51秒前
JamesPei应助一二采纳,获得10
51秒前
helloworld完成签到,获得积分10
55秒前
风风发布了新的文献求助20
56秒前
狂野怜蕾发布了新的文献求助10
57秒前
我是老大应助阳光采纳,获得10
58秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646