Improving reliability of movement assessment in Parkinson's disease using computer vision-based automated severity estimation

人工智能 评定量表 机器学习 物理医学与康复 帕金森病 物理疗法 计算机科学 医学 心理学 疾病 病理 发展心理学
作者
Jinyu Xu,Xin Xu,Xudong Guo,Zezhi Li,Boya Dong,Chen Qi,Chun-Hui Yang,Zhou Dong,Jiali Wang,Lu Song,Ping He,Shanshan Kong,Shuo Zheng,Sichao Fu,Wei Xie,Xuan Liu,Ya Cao,Y.-J. LIU,Yiqing Qiu,Zhiyuan Zheng
出处
期刊:Journal of Parkinson's disease [IOS Press]
被引量:1
标识
DOI:10.1177/1877718x241312605
摘要

Background Clinical assessments of motor symptoms rely on observations and subjective judgments against standardized scales, leading to variability due to confounders. Improving inter-rater agreement is essential for effective disease management. Objective We developed an objective rating system for Parkinson's disease (PD) that integrates computer vision (CV) and machine learning to correct potential discrepancies among raters while providing the basis for model performance to gain professional acceptance. Methods A prospective PD cohort (n = 128) were recruited from multi-centers. Motor examination videos were recorded using an android tablet with CV-based software following the MDS-UPDRS Part-III instructions. Videos included facial, upper- and lower-limb movements, arising from a chair, standing, and walking. Fifteen certified clinicians were recruited from multi-centers. For each video, five clinicians were randomly selected to independently rate the severity of motor symptoms, validate the videos and movement variables (MovVars). Machine learning algorithms were applied for automated rating and feature importance analysis. Inter-rater agreement among human raters and the agreement between artificial intelligence (AI)-generated ratings and expert consensus were calculated. Results For all validated videos (n = 1024), AI-based ratings showed an average absolute accuracy of 69.63% and an average acceptable accuracy of 98.78% against the clinician consensus. The mean absolute error between the AI-based scores and clinician consensus was 0.32, outperforming the inter-rater variability (0.65), potentially due to the combined utilization of diverse MovVars. Conclusions The algorithm enabled accurate video-based evaluation of mild motor symptom severity. AI-assisted assessment improved the inter-rater agreement, demonstrating the practical value of CV-based tools in screening, diagnosing, and treating movement disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuzi完成签到,获得积分20
刚刚
小王完成签到,获得积分10
1秒前
852应助LLZZCC采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
lalala完成签到,获得积分10
2秒前
科研通AI5应助开开采纳,获得10
2秒前
3秒前
SUCUICUI完成签到,获得积分20
3秒前
小二郎应助ying采纳,获得10
3秒前
精明的甜瓜应助qiucheng1227采纳,获得10
5秒前
5秒前
6秒前
new完成签到,获得积分10
6秒前
SUCUICUI发布了新的文献求助10
6秒前
ning完成签到,获得积分10
6秒前
7秒前
默默的巧蕊完成签到,获得积分10
9秒前
9秒前
科研通AI5应助lee采纳,获得10
9秒前
金金金完成签到,获得积分10
9秒前
科研通AI2S应助SccS采纳,获得10
9秒前
10秒前
haly完成签到 ,获得积分10
11秒前
shuzi发布了新的文献求助10
12秒前
Rocky完成签到,获得积分10
12秒前
12秒前
英俊的铭应助SUCUICUI采纳,获得10
13秒前
aaaa发布了新的文献求助10
13秒前
14秒前
TIan发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
精明松思发布了新的文献求助10
16秒前
16秒前
benben01关注了科研通微信公众号
16秒前
16秒前
17秒前
Rocky发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4309232
求助须知:如何正确求助?哪些是违规求助? 3830969
关于积分的说明 11986965
捐赠科研通 3471161
什么是DOI,文献DOI怎么找? 1903292
邀请新用户注册赠送积分活动 950557
科研通“疑难数据库(出版商)”最低求助积分说明 852441