Multi-targeted strength properties of recycled aggregate concrete through a machine learning approach

均方误差 人工神经网络 随机森林 Lasso(编程语言) 骨料(复合) 抗压强度 弹性网正则化 统计 回归 回归分析 预测建模 公制(单位) 计算机科学 数学 机器学习 算法 工程类 万维网 复合材料 运营管理 材料科学
作者
Aneel Manan,Pu Zhang,Jawad Ahmad,Muhammad Umar
出处
期刊:Engineering Computations [Emerald Publishing Limited]
卷期号:42 (1): 388-430 被引量:17
标识
DOI:10.1108/ec-07-2024-0635
摘要

Purpose Rapid industrialization and construction generate substantial concrete waste, leading to significant environmental issues. Nearly 10 billion metric tonnes of concrete waste are produced globally per year. In addition, concrete also accelerates the consumption of natural resources, leading to the depletion of these natural resources. Therefore, this study uses artificial intelligence (AI) to examine the utilization of recycled concrete aggregate (RCA) in concrete. Design/methodology/approach An extensive database of 583 data points are collected from the literature for predictive modeling. Four machine learning algorithms, namely artificial neural network (ANN), random forest (RF), ridge regression (RR) and least adjacent shrinkage and selection operator (LASSO) regression (LR), in predicting simultaneously concrete compressive and tensile strength were evaluated. The dataset contains 10 independent variables and two dependent variables. Statistical parameters, including coefficient of determination (R 2 ), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE), were employed to assess the accuracy of the algorithms. In addition, K-fold cross-validation was employed to validate the obtained results, and SHapley Additive exPlanations (SHAP) analysis was applied to identify the most sensitive parameters out of the 10 input parameters. Findings The results indicate that the RF prediction model performance is better and more satisfactory than other algorithms. Furthermore, the ANN algorithm ranks as the second most accurate algorithm. However, RR and LR exhibit poor findings with low accuracy. K-fold cross-validation was successfully applied to validate the obtained results and SHAP analysis indicates that cement content and recycled aggregate percentages are the effective input parameter. Therefore, special attention should be given to sensitive parameters to enhance the concrete performance. Originality/value This study uniquely applies AI to optimize the use of RCA in concrete production. By evaluating four machine learning algorithms, ANN, RF, RR and LR on a comprehensive dataset, this study identities the most effective predictive models for concrete compressive and tensile strength. The use of SHAP analysis to determine key input parameters and K-fold cross-validation for result validation adds to the study robustness. The findings highlight the superior performance of the RF model and provide actionable insights into enhancing concrete performance with RCA, contributing to sustainable construction practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
zcy发布了新的文献求助10
1秒前
Steve发布了新的文献求助10
2秒前
wa发布了新的文献求助10
4秒前
7秒前
贪玩的苠发布了新的文献求助20
8秒前
123完成签到,获得积分10
9秒前
hhhhh完成签到,获得积分10
11秒前
zcy完成签到,获得积分10
11秒前
丘比特应助Steve采纳,获得10
12秒前
医学小朋友完成签到,获得积分10
12秒前
鑫搭发布了新的文献求助10
13秒前
14秒前
谨慎灵萱完成签到,获得积分20
16秒前
18秒前
着急的青枫应助鑫搭采纳,获得20
21秒前
Aabaoa完成签到,获得积分10
21秒前
21秒前
谨慎灵萱发布了新的文献求助10
22秒前
wa完成签到 ,获得积分20
24秒前
wu发布了新的文献求助10
24秒前
25秒前
烂漫宝贝完成签到 ,获得积分10
25秒前
贪玩的苠完成签到,获得积分10
27秒前
失眠雨雪完成签到,获得积分10
27秒前
研友_VZG7GZ应助自然的南琴采纳,获得10
29秒前
研友_Z6Qrbn完成签到,获得积分10
29秒前
wu完成签到,获得积分10
32秒前
NexusExplorer应助wang97采纳,获得100
35秒前
外向蜡烛完成签到 ,获得积分10
36秒前
billkin完成签到,获得积分10
37秒前
xuan完成签到,获得积分10
38秒前
整齐的蜻蜓完成签到 ,获得积分10
39秒前
上官若男应助Chloe采纳,获得10
44秒前
44秒前
XL神放完成签到 ,获得积分10
48秒前
自由井完成签到,获得积分10
49秒前
kingwill发布了新的文献求助30
50秒前
DAYDAY发布了新的文献求助10
51秒前
TAOS完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777469
求助须知:如何正确求助?哪些是违规求助? 4108782
关于积分的说明 12710414
捐赠科研通 3830598
什么是DOI,文献DOI怎么找? 2112943
邀请新用户注册赠送积分活动 1136641
关于科研通互助平台的介绍 1020628