Multi-Modality Multi-Attribute Contrastive Pre-Training for Image Aesthetics Computing

人工智能 计算机科学 模态(人机交互) 计算机视觉 培训(气象学) 模式识别(心理学) 气象学 物理
作者
Yipo Huang,Leida Li,Pengfei Chen,Haoning Wu,Weisi Lin,Guangming Shi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2024.3492259
摘要

In the Image Aesthetics Computing (IAC) field, most prior methods leveraged the off-the-shelf backbones pre-trained on the large-scale ImageNet database. While these pre-trained backbones have achieved notable success, they often overemphasize object-level semantics and fail to capture the high-level concepts of image aesthetics, which may only achieve suboptimal performances. To tackle this long-neglected problem, we propose a multi-modality multi-attribute contrastive pre-training framework, targeting at constructing an alternative to ImageNet-based pre-training for IAC. Specifically, the proposed framework consists of two main aspects. (1) We build a multi-attribute image description database with human feedback, leveraging the competent image understanding capability of the multi-modality large language model to generate rich aesthetic descriptions. (2) To better adapt models to aesthetic computing tasks, we integrate the image-based visual features with the attribute-based text features, and map the integrated features into different embedding spaces, based on which the multi-attribute contrastive learning is proposed for obtaining more comprehensive aesthetic representation. To alleviate the distribution shift encountered when transitioning from the general visual domain to the aesthetic domain, we further propose a semantic affinity loss to restrain the content information and enhance model generalization. Extensive experiments demonstrate that the proposed framework sets new state-of-the-arts for IAC tasks. The code, database and pre-trained weights will be available at https://github.com/yipoh/AesNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助熠熠生辉采纳,获得10
刚刚
1秒前
小马过河完成签到,获得积分10
1秒前
1秒前
1秒前
牛牛发布了新的文献求助10
2秒前
daihahaha完成签到,获得积分10
2秒前
灵巧菠萝发布了新的文献求助10
4秒前
refraincc发布了新的文献求助10
4秒前
kekeke发布了新的文献求助10
4秒前
所所应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
地表飞猪应助科研通管家采纳,获得10
6秒前
地表飞猪应助科研通管家采纳,获得10
6秒前
fsm完成签到,获得积分10
6秒前
ED应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
zhabgyyy完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
大气的乌冬面完成签到,获得积分10
9秒前
英姑应助哇哇脸采纳,获得10
9秒前
直率小霜完成签到,获得积分10
10秒前
11秒前
CAOHOU应助hehe采纳,获得10
11秒前
所所应助refraincc采纳,获得10
12秒前
btsforever发布了新的文献求助10
12秒前
weiweiwei369完成签到,获得积分10
12秒前
13秒前
收手吧大哥应助清水采纳,获得20
13秒前
完美世界应助就是梦而已采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982537
求助须知:如何正确求助?哪些是违规求助? 3526138
关于积分的说明 11230646
捐赠科研通 3264119
什么是DOI,文献DOI怎么找? 1801803
邀请新用户注册赠送积分活动 880014
科研通“疑难数据库(出版商)”最低求助积分说明 807771