亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Screening performance and characteristics of breast cancer detected in the Mammography Screening with Artificial Intelligence trial (MASAI): a randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study

乳腺摄影术 乳腺癌筛查 乳腺癌 医学 乳房筛查 医学物理学 癌症 内科学
作者
Veronica Hernström,Viktoria Josefsson,Hanna Sartor,David Schmidt,Anna-Maria Larsson,Solveig Hofvind,Ingvar Andersson,Aldana Rosso,Oskar Hagberg,Kristina Lång
出处
期刊:The Lancet Digital Health [Elsevier BV]
被引量:6
标识
DOI:10.1016/s2589-7500(24)00267-x
摘要

SummaryBackgroundEmerging evidence suggests that artificial intelligence (AI) can increase cancer detection in mammography screening while reducing screen-reading workload, but further understanding of the clinical impact is needed.MethodsIn this randomised, controlled, parallel-group, non-inferiority, single-blinded, screening-accuracy study, done within the Swedish national screening programme, women recruited at four screening sites in southwest Sweden (Malmö, Lund, Landskrona, and Trelleborg) who were eligible for mammography screening were randomly allocated (1:1) to AI-supported screening or standard double reading. The AI system (Transpara version 1.7.0 ScreenPoint Medical, Nijmegen, Netherlands) was used to triage screening examinations to single or double reading and as detection support highlighting suspicious findings. This is a protocol-defined analysis of the secondary outcome measures of recall, cancer detection, false-positive rates, positive predictive value of recall, type and stage of cancer detected, and screen-reading workload. This trial is registered at ClinicalTrials.gov, NCT04838756 and is closed to accrual.FindingsBetween April 12, 2021, and Dec 7, 2022, 105 934 women were randomly assigned to the intervention or control group. 19 women were excluded from the analysis. The median age was 53·7 years (IQR 46·5–63·2). AI-supported screening among 53 043 participants resulted in 338 detected cancers and 1110 recalls. Standard screening among 52 872 participants resulted in 262 detected cancers and 1027 recalls. Cancer-detection rates were 6·4 per 1000 (95% CI 5·7–7·1) screened participants in the intervention group and 5·0 per 1000 (4·4–5·6) in the control group, a ratio of 1·29 (95% CI 1·09–1·51; p=0·0021). AI-supported screening resulted in an increased detection of invasive cancers (270 vs 217, a proportion ratio of 1·24 [95% CI 1·04–1·48]), wich were mainly small lymph-node negative cancers (58 more T1, 46 more lymph-node negative, and 21 more non-luminal A). AI-supported screening also resulted in an increased detection of in situ cancers (68 vs 45, a proportion ratio of 1·51 [1·03–2·19]), with about half of the increased detection being high-grade in situ cancer (12 more nuclear grade III, and no increase in nuclear grade I). The recall and false-positive rate were not significantly higher in the intervention group (a ratio of 1·08 [95% CI 0·99–1·17; p=0·084] and 1·01 [0·91–1·11; p=0·92], respectively). The positive predictive value of recall was significantly higher in the intervention group compared with the control group, with a ratio of 1·19 (95% CI 1·04–1·37; p=0·012). There were 61 248 screen readings in the intervention group and 109 692 in the control group, resulting in a 44·2% reduction in the screen-reading workload.InterpretationThe findings suggest that AI contributes to the early detection of clinically relevant breast cancer and reduces screen-reading workload without increasing false positives.FundingSwedish Cancer Society, Confederation of Regional Cancer Centres, and Swedish governmental funding for clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
edisonyan完成签到 ,获得积分10
2秒前
6秒前
112233发布了新的文献求助10
6秒前
11秒前
12秒前
打打应助皆可采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Evelyn发布了新的文献求助10
17秒前
19秒前
112233完成签到,获得积分20
20秒前
酷波er应助112233采纳,获得30
25秒前
28秒前
少管我完成签到 ,获得积分10
31秒前
zch19970203发布了新的文献求助10
33秒前
星辰大海应助学术混子采纳,获得10
45秒前
zcm1999完成签到,获得积分10
47秒前
Evelyn完成签到,获得积分20
52秒前
THEO完成签到,获得积分10
58秒前
58秒前
学术混子发布了新的文献求助10
1分钟前
1分钟前
明明发布了新的文献求助20
1分钟前
学术混子完成签到,获得积分10
1分钟前
eghiefefe发布了新的文献求助10
1分钟前
努力努力再努力完成签到,获得积分10
1分钟前
1分钟前
Zhang_Yakun应助大大彬采纳,获得10
1分钟前
eghiefefe完成签到,获得积分10
1分钟前
季风气候完成签到 ,获得积分10
1分钟前
明明完成签到,获得积分10
1分钟前
YDX完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
踏实树叶发布了新的文献求助10
1分钟前
keyword完成签到,获得积分10
1分钟前
yema完成签到 ,获得积分10
2分钟前
sadascaqwqw完成签到 ,获得积分10
2分钟前
害羞龙猫完成签到 ,获得积分10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4067195
求助须知:如何正确求助?哪些是违规求助? 3606218
关于积分的说明 11450803
捐赠科研通 3327641
什么是DOI,文献DOI怎么找? 1829475
邀请新用户注册赠送积分活动 899393
科研通“疑难数据库(出版商)”最低求助积分说明 819595